Publications by authors named "Jinhui Gu"

Pickering emulsions were co-stabilized by nanoliposome (NL) and thermally denatured ovalbumin (DOVA) based on the induction of OVA with strong particle characteristics through thermal denaturation. DOVA-NL particles were spherical and their sizes were mainly distributed between 50 and 100 nm. The surface tension and interfacial tension of DOVA-NL were significantly reduced, and the surface hydrophobicity, amphiphilicity and free -SH content of DOVA were enhanced after complexation with NL.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a significant global health concern, necessitating continuous advancements in treatment modalities to improve patient outcomes. Traditional Chinese medicine (TCM) offers alternative therapeutic approaches, but integration with modern biomedical technologies remains relatively unexplored. This study aimed to assess the efficacy of a combined treatment approach for CHD, integrating traditional Chinese medicinal interventions with modern biomedical sensors and stellate ganglion modulation.

View Article and Find Full Text PDF

The construction of lunar surface roads is conducive to improving the efficiency of lunar space transportation. The use of lunar in situ resources is the key to the construction of lunar bases. In order to explore the strength development of a simulated lunar soil geopolymer at lunar temperature, geopolymers with different sodium hydroxide (NaOH) contents were prepared by using simulated lunar regolith materials.

View Article and Find Full Text PDF

The concept of wound microenvironment has been discussed for a long time. However, the mechanism of the internal microenvironment is relatively little studied. Here, we present a systematic discussion on the mechanism of natural polymer materials such as chitosan, cellulose, collagen and hyaluronic acid through their effects on the internal wound microenvironment and regulation of wound healing, in order to more comprehensively explain the concept of wound microenvironment and provide a reference for further innovative clinical for the preparation and application of wound healing agents.

View Article and Find Full Text PDF

Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold.

View Article and Find Full Text PDF

Efficient and spatiotemporally controllable cleavage of deoxyribonucleic acid (DNA) is of great significance for both disease treatment ( tumour, bacterial infection, ) and molecular biology applications ( gene editing). The recently developed light-induced cleavage strategy based on catalytic nanoparticles has been regarded as a promising strategy for DNA controllable cleavage. Although the regulation based on orthogonal light in biomedical applications holds more significant advantages than that based on single light, nanoparticle-mediated DNA cleavage based on orthogonal light has yet to be reported.

View Article and Find Full Text PDF

Background: Frozen tilapia fillet has become a leading aquatic product. High drip loss, dry and fibrous mouthfeel, and an unappealing appearance are its main problems. It was hypothesized that light salting could improve the quality, and that the preparation conditions would affect the storage stability of frozen tilapia fillets.

View Article and Find Full Text PDF

Numerous studies have identified various prognostic long non-coding RNAs (LncRNAs) in a specific cancer type, but a comprehensive pan-cancer analysis for prediction of LncRNAs that may serve as prognostic biomarkers is of great significance to be performed. Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. There is an urgent need to identify novel therapies for GBM due to its poor prognosis and universal recurrence.

View Article and Find Full Text PDF

Background: Accurate lymph nodes (LNs) assessment is important for rectal cancer (RC) staging in multiparametric magnetic resonance imaging (mpMRI). However, it is incredibly time-consumming to identify all the LNs in scan region. This study aims to develop and validate a deep-learning-based, fully-automated lymph node detection and segmentation (auto-LNDS) model based on mpMRI.

View Article and Find Full Text PDF
Article Synopsis
  • The CCI-HBV project in China addresses the public health crisis of hepatitis B by optimizing community healthcare resources for improved screening and treatment.
  • It incorporates health management and signing services for residents, providing education, behavioral interventions, and vaccinations, while utilizing a cloud-based platform for data collection.
  • Results showed a decrease in HBsAg positive rates and new infections, indicating the project's effectiveness in managing HBV on a large scale and contributing to ongoing public health strategies.
View Article and Find Full Text PDF

Purpose: Accurate segmentation of rectal tumors is a basic and crucial task for diagnosis and treatment of rectal cancer. To avoid tedious manual delineation, an automatic rectal tumor segmentation model is proposed.

Methods: A pretrained Resnet50 model was introduced for feature extraction.

View Article and Find Full Text PDF

Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent.

View Article and Find Full Text PDF

Due to the absence of lactone form of hydroxycamptothecin, the commercially available hydroxycamptothecin injection exhibits inefficient therapeutic effects. In this study, we constructed a novel delivery system (thermosensitive magnetic liposomes) that protects lactone form of hydroxycamptothecin from blood or water. After hydroxycamptothecin was loaded into the thermosensitive magnetic liposome (HCPT/TML), its in vitro and in vivo antitumor activity and microdialysis-based tumour pharmacokinetics were determined.

View Article and Find Full Text PDF

Objective: To establish the mothod to dectect the microdialysis recovery of HCPT and to investigate the influencing factors, thus to supply experimental basis for in-vivo microdialysis of HCPT.

Method: The in vitro recovery of HCPT was detected by concentration difference method (increment method and decrement method). The influence of flow rates, medium concentration and temperature on the HCPT recovery and the stability were studied.

View Article and Find Full Text PDF