Objective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood.
Methods: We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis.
In this study, the effects of vitamin A and its metabolite, all-trans retinoic acid (ATRA), on the proliferation and differentiation of preadipocytes and the intestinal microbiome in Yanbian yellow cattle were investigated. Preadipocytes collected from Yanbian yellow cattle treated with different concentrations of ATRA remained in the G1/G0 phase, as determined by flow cytometry. Quantitative reverse-transcription polymerase chain reaction and western blotting analyses showed that the mRNA and protein expression levels of key adipogenic factors, peroxisome proliferator- activated receptor gamma (PPARγ), CCAAT enhancer-binding protein α (C/EBPα), and extracellular signal-regulated kinase 2 (ERK2), decreased.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs of approximately 21 to 23 nucleotides in length. Owing to their regulation of gene expression and many physiological processes including fat metabolism, they have become a popular research topic in recent years; however, the exact functional mechanisms by which they regulate fat metabolism have not been fully elucidated. Here, we identified miR-15a, which specifically acquired the 3' untranslated region (UTR) containing 4-aminobutyrate aminotransferase (ABAT), and validated the regulation of its expression and involvement in adipogenesis mechanisms.
View Article and Find Full Text PDF