Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, the genetic mechanisms and target genes underlying these loci are largely unknown, as most risk-associated-variants might regulate gene expression in a context-specific manner. Here, we generated a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation.
View Article and Find Full Text PDFThe most recent genome-wide association study (GWAS) of cutaneous melanoma identified 54 risk-associated loci, but functional variants and their target genes for most have not been established. Here, we performed massively parallel reporter assays (MPRAs) by using malignant melanoma and normal melanocyte cells and further integrated multi-layer annotation to systematically prioritize functional variants and susceptibility genes from these GWAS loci. Of 1,992 risk-associated variants tested in MPRAs, we identified 285 from 42 loci (78% of the known loci) displaying significant allelic transcriptional activities in either cell type (FDR < 1%).
View Article and Find Full Text PDFAir pollution involving particulate matter smaller than 2.5 μm in size (PM2.5) is the world's leading environmental risk factor contributing to mortality through cardiometabolic pathways.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified ~20 melanoma susceptibility loci, most of which are not functionally characterized. Here we report an approach integrating massively-parallel reporter assays (MPRA) with cell-type-specific epigenome and expression quantitative trait loci (eQTL) to identify susceptibility genes/variants from multiple GWAS loci. From 832 high-LD variants, we identify 39 candidate functional variants from 14 loci displaying allelic transcriptional activity, a subset of which corroborates four colocalizing melanocyte cis-eQTL genes.
View Article and Find Full Text PDFNucleic Acids Res
June 2016
The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain.
View Article and Find Full Text PDFSLX4 assembles a toolkit of endonucleases SLX1, MUS81 and XPF, which is recruited to telomeres via direct interaction of SLX4 with TRF2. Telomeres present an inherent obstacle for DNA replication and repair due to their high propensity to form branched DNA intermediates. Here we provide novel insight into the mechanism and regulation of the SLX4 complex in telomere preservation.
View Article and Find Full Text PDFUracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1.
View Article and Find Full Text PDFSLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown.
View Article and Find Full Text PDFReactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1-3) repeats, which are maintained primarily by telomerase.
View Article and Find Full Text PDFBLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex.
View Article and Find Full Text PDFCellular and biochemical studies support a role for all five human RecQ helicases in DNA replication; however, their specific functions during this process are unclear. Here we investigate the in vivo association of the five human RecQ helicases with three well-characterized human replication origins. We show that only RECQ1 (also called RECQL or RECQL1) and RECQ4 (also called RECQL4) associate with replication origins in a cell cycle-regulated fashion in unperturbed cells.
View Article and Find Full Text PDFHuman DNA ligase I (hLigI) participates in DNA replication and excision repair via an interaction with proliferating cell nuclear antigen (PCNA), a DNA sliding clamp. In addition, hLigI interacts with and is inhibited by replication factor C (RFC), the clamp loader complex that loads PCNA onto DNA. Here we show that a mutant version of hLigI, which mimics the hyperphosphorylated M-phase form of hLigI, does not interact with and is not inhibited by RFC, demonstrating that inhibition of ligation is dependent upon the interaction between hLigI and RFC.
View Article and Find Full Text PDFIn quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes.
View Article and Find Full Text PDFMutations in a human RecQ helicase homologue, RECQL4, have been identified in patients with Type II Rothmund-Thomson syndrome (RTS) with osteosarcoma predisposition, RAPADILINO syndrome, and Baller-Gerold syndrome. A role in DNA replication initiation has been demonstrated and mapped to the amino terminus upstream of the helicase domain; however, no nuclear localization signal (NLS) has been identified by sequence analysis. Here, we show both endogenous and green fluorescent protein (GFP)-tagged RECQL4 are nuclear and cytoplasmic in transformed cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2006
BLM encodes a member of the highly conserved RecQ DNA helicase family, which is essential for the maintenance of genome stability. Homozygous inactivation of BLM gives rise to the cancer predisposition disorder Bloom's syndrome. A common feature of many RecQ helicase mutants is a hyperrecombination phenotype.
View Article and Find Full Text PDFBloom's syndrome (BS) is a rare human genetic disorder characterized by dwarfism, immunodeficiency, genomic instability and cancer predisposition. We have previously purified three complexes containing BLM, the helicase mutated in this disease. Here we demonstrate that BLAP75, a novel protein containing a putative OB-fold nucleic acid binding domain, is an integral component of BLM complexes, and is essential for their stability in vivo.
View Article and Find Full Text PDFFanconi anemia (FA) proteins function in a DNA damage response pathway that appears to be part of the network including breast cancer susceptibility gene products, BRCA1 and BRCA2. In response to DNA damage or replication signals, a nuclear FA core complex of at least 6 FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG and FANCL) is activated and leads to monoubiquitination of the downstream FA protein, FANCD2. One puzzling question for this pathway is the role of BRCA2.
View Article and Find Full Text PDFThe Rothmund-Thomson syndrome (growth retardation, skin and bone defects, predisposition to cancer) and the RAPADILINO syndrome are caused by mutations in the RECQL4 gene. The 133 kDa RECQL4 is a putative DNA helicase, a member of the family that includes the BLM and WRN helicases. The latter are mutated, respectively, in the Bloom and Werner syndromes, whose manifestations include predisposition to cancer.
View Article and Find Full Text PDFDOCK180 protein plays a key role during development, cell motility, and phagocytosis. It forms a complex with another protein ELMO, and this complex acts as a guanine nucleotide exchange factor (GEF) for Rac. However, DOCK180-containing complexes have not been purified by unbiased biochemical approaches, and the nature and subcellular localization of these complexes remain unclear.
View Article and Find Full Text PDFThere are two hydrogen bonding interactions (N138ND2-Q106O and Y54OH-S141OG) between the C-terminal region and the main body of staphylococcal nuclease (SNase). To examine the role of these hydrogen bonds, SNase(141) and its three mutants, SNase(141)N138D, SNase(141)S141A, and SNase(141)N138D/S141A, were created. The N138D mutation has the N138ND2-Q106O interaction deleted and the S141A mutation has the Y54OH-S141OG and S141OG-N138O interactions deleted.
View Article and Find Full Text PDF