Water-repellent superhydrophobic surfaces are ubiquitous in nature. The fundamental understanding of bio/bio-inspired structures facilitates practical applications surmounting metastable superhydrophobicity. Typically, the hierarchical structure and/or reentrant morphology have been employed hitherto to suppress the Cassie-Baxter to Wenzel transition (CWT).
View Article and Find Full Text PDFIon interactions with interfaces and transport in confined spaces, where electric double layers overlap, are essential in many areas, ranging from crevice corrosion to understanding and creating nano-fluidic devices at the sub 10 nm scale. Tracking the spatial and temporal evolution of ion exchange, as well as local surface potentials, in such extreme confinement situations is both experimentally and theoretically challenging. Here, we track in real-time the transport processes of ionic species (LiClO) confined between a negatively charged mica surface and an electrochemically modulated gold surface using a high-speed sensing Surface Forces Apparatus.
View Article and Find Full Text PDFThe quantification of supramolecular host-guest interactions is important for finely modulating supramolecular systems. Previously, most host-guest interactions quantified using force spectroscopic techniques have been reported in force units. However, accurately evaluating the adhesion energies of host-guest pairs remains challenging.
View Article and Find Full Text PDFLignin has been spotlighted as an abundant renewable bioresource for use in material technologies and applications such as biofuels, binders, composites, and nanomaterials for drug delivery. However, owing to its complex and irregular structure, it is difficult to investigate its fundamental interaction mechanism, which is necessary to promote its use. In this study, a surface forces apparatus (SFA) was used to investigate the pH-dependent molecular interactions between a lignin nanofilm and five functionalized self-assembled monolayers (SAMs).
View Article and Find Full Text PDF