The development of synthetic methods for monodisperse nanomaterial is of great importance in science and technology related to nanomaterials. The strong demands to prepare exceptionally monodisperse nanocrystals have made digestive-ripening one of the most sought-after size-focusing processes. Although digestive-ripening processes have been demonstrated to produce various metals and semiconductors, their applicability to oxides has rarely been studied despite various unique properties and applications of oxide nanomaterials.
View Article and Find Full Text PDFThe lithium-sulfur (Li-S) battery faces a couple of major problems in practical applications, including the low conductivity of sulfur and the dissolution of polysulfides. A cathode constructed using a composite of sulfur and ordered mesoporous carbon (OMC) is a promising solution to both problems, as OMCs can have high conductivity and a complex pore structure to trap polysulfides. In this work, we demonstrate that performance of the Li-S battery can be significantly enhanced by using an OMC with a high degree of graphitization and a pore network with cubic symmetry.
View Article and Find Full Text PDFWe demonstrate a novel route to synthesize Fe3O4-CdSe/ZnS multifunctional nanoclusters (MNCs) with excellent optical and magnetic properties and biocompatibility. The successful fabrication of highly fluorescent and magnetic MNCs is achieved via a coupling process based on a partial ligand exchange reaction at the aqueous-organic solution interface. In addition, we show that dendritic cells (DCs), the sentinel of the immune system, can uptake the MNCs without significant change in cell viability.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2012
Lead-free (K0.5Na0.5)(Nb0.
View Article and Find Full Text PDF