Publications by authors named "Jinhong Fu"

Skin and feather follicle development are essential processes for goose embryonic growth. Transcriptome and next-generation sequencing (NGS) network analyses were performed to improve the genome of Zhedong White goose and discover the critical genes, miRNAs, and pathways involved in goose skin and feather follicle morphogenesis. Sequencing output generated 6,002,591,668 to 8,675,720,319 clean reads from fifteen libraries.

View Article and Find Full Text PDF

The green synthesis of silver nanoparticles (AgNPs) using a water extract of Ginger (Zingiber officinale) root by microwave irradiation and its antibacterial activities have been reported. However, AgNPs prepared from different parts of ginger root water or ethanol extract by ultrasound synthesis and their antioxidant activity and whether the biogenic could be used to catalyze the reduction of hazardous dye are unknown. This study concentrated on the facile green synthesis of AgNPs prepared from different parts (unpeeled ginger, peeled ginger, and ginger peel) of ginger root water or ethanol extract by the ultrasound-assisted method.

View Article and Find Full Text PDF

Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development.

View Article and Find Full Text PDF

The Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway plays an important role in embryonic development and affects the physiological development processes of feather follicles. To investigate the role of Wnt/β-catenin pathway in regulating feather follicles morphogenesis, in ovo injection of CHIR-99021, an activator of the Wnt/β-catenin signaling pathway, was conducted in chick embryo model. Initially, a total of 40 embryos were used to assess feather follicles morphogenesis and the expression of β-catenin (E9-E17).

View Article and Find Full Text PDF

A superhydrophobic/hydrophilic asymmetric free-standing film has been created using layer-by-layer assembly technique. Poly(ethylene-imine)-Ag(+) complex (PEI-Ag(+)) at pH 9.0 was assembled with poly(acrylic acid) (PAA) at pH 3.

View Article and Find Full Text PDF

A humido-responsive free-standing film has been created using layer-by-layer assembly technique. Polyethylenimine (PEI) at high pH was assembled with poly(acrylic acid) (PAA) at low pH on a Teflon substrate to yield a micro-nanostructured surface that can be made superhydrophobic after being coated with a low surface energy compound. The resulting asymmetric free-standing film with one surface being superhydrophobic while the other is hydrophilic after detachment from the substrate can undergo reversible bending/unbending shape transitions when the environmental humidity is changed.

View Article and Find Full Text PDF

Chitosan and heparin multilayer films were successfully constructed via layer-by-layer self assembly. These films were used as a polymeric template to synthesize silver nanoparticles. The silver concentration and nanoparticle size can be simply controlled by the assembly pH and loading pH, as demonstrated by UV-visible spectroscopy, transmission electron microscopy and atomic absorbance spectroscopy.

View Article and Find Full Text PDF

We report a direct method to amplify the exponential growth of multilayers significantly by the alternating deposition of polyethylenimine (PEI) at high pH and poly(acrylic acid) (PAA) at low pH. The alternating pH switches the degree of ionization of the polyelectrolytes in the multilayers, which enhances the diffusion of PEI into and out of the film and hence increases the deposited mass per cycle. The synergetic action of the pH-tunable charge density and diffusivity of the weak polyelectrolytes provides a new method for the enhanced growth of multilayers with hierarchal micro- and nanostructured surfaces.

View Article and Find Full Text PDF

A multifunctional multilayered film containing TiO(2) nanoparticles as contact-active antibacterial agent and nanosilver as a release-active antibacterial agent was fabricated via layer-by-layer assembly. TiO(2) nanoparticles with the anatase crystalline dominant structure were synthesized via a sol-gel method. The QCM, AFM, and contact angle measurement results indicated that the TiO(2) nanoparticle-chitosan was successfully assembled with heparin via layer-by-layer assembly.

View Article and Find Full Text PDF

Antibacterial multilayer films containing nanosilver were prepared via layer-by-layer fashion. PET film was aminolyzed with 1,6-hexanediamine to introduce amino groups on PET film surface; chitosan-silver nitrate complex and heparin were alternately deposited onto an aminolyzed PET film surface, and subsequently, the silver ions within the multilayer films were reduced with ascorbic acid to form silver nanoparticles. UV-visible spectroscopy and transmission electron microscopy confirmed the formation of well-dispersed nanosilver particles with sizes (10-40 nm) that depended on the initial concentration of silver ions in chitosan solution and the pH of ascorbic acid solution.

View Article and Find Full Text PDF

Chitosan as an antibacterial agent and heparin as an anti-adhesive agent were alternatively deposited onto aminolyzed poly(ethylene terephthalate) (PET) films to construct anti-adhesive and antibacterial multilayer films. The contact-angle and UV data verified the progressive buildup of the multilayer film by alternate deposition of the polyelectrolytes. The properties of multilayer films were investigated by contact angle, atomic force microscopy (AFM), lateral force microscopy (LFM) and UV spectra.

View Article and Find Full Text PDF