Publications by authors named "Jingzhi Pu"

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published.

View Article and Find Full Text PDF

DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms.

View Article and Find Full Text PDF

In the last several years, there has been a surge in the development of machine learning potential (MLP) models for describing molecular systems. We are interested in a particular area of this field - the training of system-specific MLPs for reactive systems - with the goal of using these MLPs to accelerate free energy simulations of chemical and enzyme reactions. To help new members in our labs become familiar with the basic techniques, we have put together a self-guided Colab tutorial (https://cc-ats.

View Article and Find Full Text PDF

In enzyme mechanistic studies and mutant design, it is highly desirable to know the individual residue contributions to the reaction free energy and barrier. In this work, we show that such free energy contributions from each residue can be readily obtained by postprocessing quantum mechanical molecular mechanical (ai-QM/MM) free energy simulation trajectories. Specifically, through a mean force integration along the minimum free energy pathway, one can obtain the electrostatic, polarization, and van der Waals contributions from each residue to the free energy barrier.

View Article and Find Full Text PDF

Programmable manipulation of inorganic-organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV).

View Article and Find Full Text PDF

Free energy simulations that employ combined quantum mechanical and molecular mechanical (QM/MM) potentials at ab initio QM (AI) levels are computationally highly demanding. Here, we present a machine-learning-facilitated approach for obtaining AI/MM-quality free energy profiles at the cost of efficient semiempirical QM/MM (SE/MM) methods. Specifically, we use Gaussian process regression (GPR) to learn the potential energy corrections needed for an SE/MM level to match an AI/MM target along the minimum free energy path (MFEP).

View Article and Find Full Text PDF

In bacterial endospores, a cross-linked thymine dimer, 5-thyminyl-5,6-dihydrothymine, commonly referred to as the spore photoproduct (SP), is found as the dominant DNA photo lesion under UV radiation. During spore germination, SP is faithfully repaired by the spore photoproduct lyase (SPL) for normal DNA replication to resume. Despite this general mechanism, the exact way in which SP modifies the duplex DNA structure so that the damaged site can be recognized by SPL to initiate the repair process is still unclear.

View Article and Find Full Text PDF

Inspired by the recent work from Noé and coworkers on the development of machine learning based implicit solvent model for the simulation of solvated peptides [Chen , , 2021, , 084101], here we report another investigation of the possibility of using machine learning (ML) techniques to "derive" an implicit solvent model directly from explicit solvent molecular dynamics (MD) simulations. For alanine dipeptide, a machine learning potential (MLP) based on the DeepPot-SE representation of the molecule was trained to capture its interactions with its average solvent environment configuration (ASEC). The predicted forces on the solute deviated only by an RMSD of 0.

View Article and Find Full Text PDF

In combined quantum mechanical and molecular mechanical (QM/MM) free energy simulations, how to synthesize the accuracy of (AI) methods with the speed of semiempirical (SE) methods for a cost-effective QM treatment remains a long-standing challenge. In this work, we present a machine-learning-facilitated method for obtaining AI/MM-quality free energy profiles through efficient SE/MM simulations. In particular, we use Gaussian process regression (GPR) to learn the energy and force corrections needed for SE/MM to match with AI/MM results during molecular dynamics simulations.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations employing quantum mechanical and molecular mechanical (ai-QM/MM) potentials are considered to be the state of the art, but the high computational cost associated with the ai-QM calculations remains a theoretical challenge for their routine application. Here, we present a modified protocol of the multiple time step (MTS) method for accelerating ai-QM/MM MD simulations of condensed-phase reactions. Within a previous MTS protocol [Nam 2014, 10, 4175], reference forces are evaluated using a low-level (semiempirical QM/MM) Hamiltonian and employed at inner time steps to propagate the nuclear motions.

View Article and Find Full Text PDF

A major shortcoming of semiempirical (SE) molecular orbital methods is their severe underestimation of molecular polarizability compared with experimental and (AI) benchmark data. In a combined quantum mechanical and molecular mechanical (QM/MM) treatment of solution-phase reactions, solute described by SE methods therefore tends to generate inadequate electronic polarization response to solvent electric fields, which often leads to large errors in free energy profiles. To address this problem, here we present a hybrid framework that improves the response property of SE/MM methods through high-level molecular-polarizability fitting.

View Article and Find Full Text PDF

Despite recent advances in the development of machine learning potentials (MLPs) for biomolecular simulations, there has been limited effort on developing stable and accurate MLPs for enzymatic reactions. Here we report a protocol for performing machine-learning-assisted free energy simulation of solution-phase and enzyme reactions at the ab initio quantum-mechanical/molecular-mechanical (-QM/MM) level of accuracy. Within our protocol, the MLP is built to reproduce the -QM/MM energy and forces on both QM (reactive) and MM (solvent/enzyme) atoms.

View Article and Find Full Text PDF

A series of oxo-Mo(iv) complexes, [MoO(Dt)(Dt)] (where Dt = benzene-1,2-dithiol (bdt), toluene-3,4-dithiol (tdt), quinoxaline-2,3-dithiol (qdt), or 3,6-dichloro-benzene-1,2-dithiol (bdtCl); Dt = ,'-dimethylpiperazine-2,3-dithione (MeDt) or ,'-diisopropylpiperazine-2,3-dithione ( PrDt)), possessing a fully oxidized and a fully reduced dithiolene ligand have been synthesized and characterized. The assigned oxidation states of coordinated dithiolene ligands are supported with spectral and crystallographic data. The molecular structure of [MoO(tdt)( PrDt)] () demonstrates a large ligand fold angle of 62.

View Article and Find Full Text PDF

First-principles determination of free energy profiles for condensed-phase chemical reactions is hampered by the daunting costs associated with configurational sampling on ab initio quantum mechanical/molecular mechanical (AI/MM) potential energy surfaces. Here, we report a new method that enables efficient AI/MM free energy simulations through mean force fitting. In this method, a free energy path in collective variables (CVs) is first determined on an efficient reactive aiding potential.

View Article and Find Full Text PDF

Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde.

View Article and Find Full Text PDF

An efficient and accurate reference potential simulation protocol is proposed for producing ab initio quantum mechanical/molecular mechanical (AI-QM/MM) quality free energy profiles for chemical reactions in a solvent or macromolecular environment. This protocol involves three stages: (a) using force matching to recalibrate a semi-empirical quantum mechanical (SE-QM) Hamiltonian for the specific reaction under study; (b) employing the recalibrated SE-QM Hamiltonian (in combination with molecular mechanical force fields) as the reference potential to drive umbrella samplings along the reaction pathway; and (c) computing AI-QM/MM energy values for collected configurations from the sampling and performing weighted thermodynamic perturbation to acquire an AI-QM/MM corrected reaction free energy profile. For three model reactions (identity S2 reaction, Menshutkin reaction, and glycine proton transfer reaction) in aqueous solution and one enzyme reaction (Claisen arrangement in chorismate mutase), our simulations using recalibrated PM3 SE-QM Hamiltonians well reproduced QM/MM free energy profiles at the B3LYP/6-31G* level of theory all within 1 kcal mol with a 20 to 45 fold reduction in the computer time.

View Article and Find Full Text PDF

The cyclobutane pyrimidine dimer (CPD) is a major photoproduct of deoxyribonucleic acid (DNA) that is damaged by ultraviolet light. This DNA lesion can be repaired by DNA photolyase with the aid of UV light and two cofactors. To understand the repair mechanism of CPD and whether protonation of CPD participates in the DNA repair process, the cycloreversion reactions of four CPD models and proton transfers between the adjacent residue Glu283 and CPD models were explored through the quantum mechanical method.

View Article and Find Full Text PDF

HlyB functions as an adenosine triphosphate (ATP)-binding cassette (ABC) transporter that enables bacteria to secrete toxins at the expense of ATP hydrolysis. Our previous work, based on potential energy profiles from combined quantum mechanical and molecular mechanical (QM/MM) calculations, has suggested that the highly conserved H-loop His residue H662 in the nucleotide binding domain (NBD) of HlyB may catalyze the hydrolysis of ATP through proton relay. To further test this hypothesis when entropic contributions are taken into account, we obtained QM/MM minimum free energy paths (MFEPs) for the HlyB reaction, making use of the string method in collective variables.

View Article and Find Full Text PDF

This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS), carboxylate (-COO), and amine (-NH)], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- < Naph- < Anth- < Py-DTC.

View Article and Find Full Text PDF

The rotary motor enzyme FoF1-ATP synthase uses the proton-motive force across a membrane to synthesize ATP from ADP and Pi (H2PO4(-)) under cellular conditions that favor the hydrolysis reaction by a factor of 2 × 10(5). This remarkable ability to drive a reaction away from equilibrium by harnessing an external force differentiates it from an ordinary enzyme, which increases the rate of reaction without shifting the equilibrium. Hydrolysis takes place in the neighborhood of one conformation of the catalytic moiety F1-ATPase, whose structure is known from crystallography.

View Article and Find Full Text PDF

We present a general strategy of reparametrizing semiempirical (SE) methods against ab initio (AI) methods for combined quantum mechanical and molecular mechanical (QM/MM) simulations of specific chemical reactions in condensed phases. The resulting approach, designated Reaction Path Force Matching (RP-FM), features cycles of sampling configurations along a reaction path on an efficient SE/MM potential energy surface (PES) and adjusting specific reaction parameters (SRPs) in the SE method such that the atomic forces computed at the target AI/MM level are reproduced. Iterative applications of the RP-FM cycle make possible achieving the accuracy of AI/MM simulations without explicitly sampling the computationally expensive AI/MM PES.

View Article and Find Full Text PDF

We tested the isotropic periodic sum (IPS) method for computing Madelung energies of ionic crystals. The performance of the method, both in its nonpolar (IPSn) and polar (IPSp) forms, was compared with that of the zero-charge and Wolf potentials [D. Wolf, P.

View Article and Find Full Text PDF

The isotropic periodic sum (IPS) method was extended to describe long-range electrostatic interactions in combined quantum mechanical and molecular mechanical (QM/MM) calculations. The resulting method, designated QM/MM-IPS, was tested for two ion association processes and a model SN2 reaction in aqueous solution. Potential of mean force (PMF) profiles and radial distribution functions computed from the QM/MM-IPS simulations were compared with those obtained by using the existing QM/MM-Ewald sum and cutoff (QM/MM-Cutoff) methods.

View Article and Find Full Text PDF

Small acid soluble proteins (SASPs) of α/β-type play a major role in the resistance of spore DNAs to external assaults. It has been found that α/β-type SASP exhibits intrinsic disorder on isolation, but it acquires a defined native state upon binding to DNA. This disorder to order transition is not yet understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session29igiddgmhk2ltb13478s8i5b7gjftlm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once