Introduction: Microbial succession and metabolic adjustment during cigar tobacco leaf (CTL) fermentation are key factors to improve the quality and flavor of CTLs. However, the interactions in the above processes remain to be further elucidated.
Methods: inoculants were added to the CTLs, and metagenomics and metabolomics were used to analyze the effects of the inoculants on regulating microbial succession, metabolic shift, and aroma production during fermentation.
The applications of silica-based glass have evolved alongside human civilization for thousands of years. High-precision manufacturing of three-dimensional (3D) fused silica glass objects is required in various industries, ranging from everyday life to cutting-edge fields. Advanced 3D printing technologies have emerged as a potent tool for fabricating arbitrary glass objects with ultimate freedom and precision.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam.
View Article and Find Full Text PDFThis paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy.
View Article and Find Full Text PDF