Publications by authors named "Jingyin Chen"

Background: Spinal epidural arachnoid cysts (SEACs) are rare, non-neoplastic pathologies that can cause compressive myelopathy. Preoperative identification of the exact fistula location is crucial for minimally invasive management.

Methods: This single-center retrospective study included 27 patients with SEACs who underwent "double-needle puncture myelography" to precisely localize the fistula before minimally invasive surgery.

View Article and Find Full Text PDF

Purpose: Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essential for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based on convolutional neural networks (CNNs), the aim of this study was to determine whether CNN-based interpretation of magnetic resonance (MR) images of these two tumours could be achieved.

Methods: Contrast-enhanced MRI data from 50 patients with primary FTE and 50 schwannomas in the lumbosacral spinal canal were retrospectively collected and used as training and internal validation datasets.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury.

View Article and Find Full Text PDF

Objective: The progression of the asymptomatic hemisphere of moyamoya disease (MMD) is largely unknown. In this study, we investigated the differences in subcortical gray matter structure and angiographic features between asymptomatic and symptomatic hemispheres in patients with MMD.

Methods: We retrospectively reviewed patients with MMD in consecutive cases in our center.

View Article and Find Full Text PDF

Background: In patients with moyamoya disease (MMD), focal impairments in cerebral hemodynamics are often inconsistent with patients' clinical prognoses. Evaluation of entire brain functional networks may enable predicting MMD outcomes after revascularization.

Objective: To investigate whether preoperative brain functional connectivity could predict outcomes after revascularization in MMD.

View Article and Find Full Text PDF

Objective: Cerebral ischemia and intracranial hemorrhage are the two main phenotypes of moyamoya disease (MMD). However, the pathophysiological processes of these two MMD phenotypes are still largely unknown. Here, we aimed to use multimodal neuroimaging techniques to explore the brain structural and functional differences between the two MMD subtypes.

View Article and Find Full Text PDF

Background: Disruption of brain functional connectivity has been detected after stroke, but whether it also occurs in moyamoya disease (MMD) is unknown. Impaired functional connectivity is always correlated with abnormal white matter fibers. Herein, we used multimodal imaging techniques to explore the changes in brain functional and structural connectivity in MMD patients.

View Article and Find Full Text PDF

Neuroinflammation is closely associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs), which are important regulators of sterile inflammation, in SAH. In this study, markers of NET formation, quantified by the level of citrullinated histone H3 (CitH3), were significantly increased after SAH and correlated with SAH severity.

View Article and Find Full Text PDF

Background And Purpose: The mechanisms of brain damage during ultra-early subarachnoid hemorrhage (SAH) have not been well studied. The current study examined the SAH-induced hyperacute brain damage at 4 hours using magnetic resonance imaging and brain histology in a mouse model.

Methods: SAH was induced by endovascular perforation in adult mice.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and severe morbidity. Hemorrhages frequently develop within the white matter, but whether white matter fibers within the hematoma survive after ICH has not been well studied. The current study examines whether white matter fibers persist in the hematoma after ICH, fibers that might be impacted by evacuation, and their relationship to macrophage infiltration in a porcine model.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common, malignant, and deadly primary glioma. Six-transmembrane epithelial antigen of prostate (STEAP) family is involved in tumorigenesis; here, we have explored the biological function and the prognostic value of the STEAP family in GBM. Differentially expressed STEAP genes in tumor and normal samples were screened by using The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Background: Neuroinflammation is closely associated with the poor prognosis in subarachnoid hemorrhage (SAH) patients. This study was aimed to determine the role of stimulator of IFN genes (STING), an essential regulator to innate immunity, in the context of SAH.

Methods: A total of 344 male C57BL/6 J mice were subjected to endovascular perforation to develop a model of SAH.

View Article and Find Full Text PDF

Background and Purpose- Our recent study demonstrated that release of Prx2 (peroxiredoxin 2) from red blood cells (RBCs) is involved in the inflammatory response and brain injury after intracerebral hemorrhage. The current study investigated the role of extracellular Prx2 in hydrocephalus development after experimental intraventricular hemorrhage. Methods- There were 4 parts in this study.

View Article and Find Full Text PDF

Necroptosis is an inflammatory form of cell death that depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and displays the morphological characteristics of necrosis. To date, it is unclear to what extent necroptosis contributes to subarachnoid hemorrhage (SAH) induced brain injury. The present study aimed to investigate the RIPK3-mediated necroptosis and the effects of the RIPK3 selective inhibitor GSK'872 in early brain injury following SAH.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment.

View Article and Find Full Text PDF

Background: Shunt infection (SI) is a dreaded and major complication in the management of hydrocephalus after cerebral fluid shunts. We reviewed retrospectively shunted for hydrocephalus during the last 2 years to evaluate the incidence of SI, including the risk factors and types of infection.

Methods: Patients who had undergone a shunt operation from January 2013 to December 2014 in our hospital were observed, study clinical data and a 6-24 months follow-up.

View Article and Find Full Text PDF

Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation.

View Article and Find Full Text PDF

Background: The NLRP3 inflammasome is a multiprotein complex that regulates the innate immune inflammatory response by activating caspase-1 and subsequent IL-1β and IL-18. Fluoxetine has been shown to have the anti-inflammatory properties in many disease models. However, the effects and mechanisms of these effects of fluoxetine in early brain injury after subarachnoid hemorrhage (SAH) have not been defined.

View Article and Find Full Text PDF

The NLRP3 inflammasome is activated in the early period following subarachnoid hemorrhage(SAH), resulting in inflammatory responses. Recent studies have shown that activation of NLRP3 inflammasome is suppressed by autophagy, but the potential mechanism is unclear. In this study, we examined whether mitophagy was involved in the beneficial effect of melatonin and its relationship with NLRP3 inflammasome activation after SAH.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a serious medical problem with few effective pharmacotherapies available, and neuroinflammation has been identified as an important pathological process in early brain injury (EBI) after SAH. Methylene blue (MB) is an older drug that has been recently proven to exert extraordinary neuroprotective effects in several brain insults. However, no study has reported the beneficial effects of MB in SAH.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a serious medical and social problem worldwide. Because of the complex pathophysiological mechanisms of TBI, effective pharmacotherapy is still lacking. The microglial cells are resident tissue macrophages located in the brain and have two major polarization states, M1 phenotype and M2 phenotype, when activated.

View Article and Find Full Text PDF

Background And Objectives: Vasospasm-related injury such as delayed ischemic neurological defect (DIND) or cerebral infarction is an important prognostic factor for aneurismal subarachnoid hemorrhage (SAH). Whether cerebrospinal fluid (CSF) drainage can achieve a better outcome in aneurismal SAH patients after coiling or clipping remains the subject of debate. Here, we report a meta-analysis of the related available literature to assess the effect of continuous CSF drainage on clinical outcomes in patients with aneurismal SAH.

View Article and Find Full Text PDF

The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa.

View Article and Find Full Text PDF