Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.
View Article and Find Full Text PDFBacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells.
View Article and Find Full Text PDFBackground: There have been some studies on the occurrence of ESR1 and 2 polymorphisms and AIS, but some data extraction is wrong, and there are no studies on the progress of AIS.
Methods: Computer searches were conducted on PubMed, EMBASE, ScienceDirect and Scopus from the establishment of the database to April 2024. Cross-sectional and case-control studies on estrogen receptor ESR1, two single nucleotide polymorphisms, and the occurrence and development of AIS were collected, and statistical analysis was performed using the Revman 5.
Gelatin-based bioadhesives, especially methacrylated gelatin (GelMA), have emerged as superior alternatives to sutureless wound closure. Nowadays, their mechanical improvement and therapeutic delivery, particularly for hydrophobic antibiotics, have received ever-increasing interest. Herein, a reinforced gelatin-based hydrogel with a hydrophobic drug delivery property for skin wound treatment was reported.
View Article and Find Full Text PDFThe development of cationic polymers as alternative materials to antibiotics necessitates addressing the challenge of balancing their antimicrobial activity and toxicity. Here we propose a precise switching strategy inspired by biomimetic voltage-gated ion channels, enabling controlled activation and inhibition of cationic antimicrobial functions through protein conformational transitions in diverse physiological environments. Following thermodynamic studies on the specific recognition between mannose end groups on polycations and concanavalin A (ConA), we synthesized a type of ConA-polycation nanoparticle.
View Article and Find Full Text PDFThe stalling development of antibiotics, especially against intrinsically resistant Gram-negative pathogens associated with outer membranes, leads to an emerging antibiotic crisis across the globe. To breathe life into existing drugs, we herein report a hypoxia-responsive nanoparticle (NP) that encapsulates a hydrophobic antibiotic, rifampicin, and a cationic potentiator, polysulfonium. The simultaneous release of antibiotics and potentiators can be promoted and inhibited in response to the severity of bacterial-induced hypoxia, leading to antimicrobial dosing in a precision manner.
View Article and Find Full Text PDFBackground: Contrast-induced nephropathy (CIN) is a frequent complication in patients undergoing percutaneous coronary intervention (PCI). The degree of recovery of renal function from CIN may affect long-term prognosis. N-terminal pro B-type natriuretic peptide (NT-proBNP) is a simple but useful biomarker for predicting CIN.
View Article and Find Full Text PDFBackground: Coronary heart disease is a highly prevalent inflammatory disease caused by coronary atherosclerosis. Numerous studies have revealed that perivascular adipose tissue is closely associated with atherosclerosis. Here, we conducted a comprehensive analysis of long non-coding RNAs and mRNAs differentially expressed in perivascular adipose tissue in patients with coronary heart disease.
View Article and Find Full Text PDFAntimicrobials against planktonic cells and established biofilms at low doses are in increasing demand to tackle antibiotic-resistant biofilm infections. As a promising alternative to antibiotics, cationic polymers can effectively kill planktonic microbes but usually require high concentrations to eradicate the established biofilms. Herein, we developed a series of sulfonium-based homopolymers with cationic sulfoniums and alkane spacers in the main chain.
View Article and Find Full Text PDFIncorporation of cationic groups into polymers represents one of the most widely used strategies to prepare antibacterial materials. Sulfonium, as a typical cationic moiety, displays potent antibacterial efficacy in the form of small molecules, however, has long underperformed in polymeric systems. Herein, we developed a series of alternating polysulfoniums, where the hydrophobicity of each alternating unit can be accurately tuned by altering the monomer precursors.
View Article and Find Full Text PDFAlthough photothermal therapy (PTT) can effectively eliminate tumors, the normal tissues near tumors are inevitably damaged by heat and infected by bacteria, which greatly limits the therapeutic effect. In this work, an injectable thermosensitive hydrogel based on iodine-loaded starch-g-poly(N-isopropylacrylamide) (PNSI) is developed to overcome this problem. FTIR, H NMR, and UV-vis spectra confirm the graft copolymerization of poly(N-isopropylacrylamide) with starch and the formation of "iodine-starch" complex.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2022
Abernethy malformation is an extremely rare anomaly of the splanchnic venous system, and only 2 cases that manifested as syncope had been reported previously. A 24-year-old male had a 15-year history of jaundice and was in long-term use of hepatoprotective drugs. He was admitted for complaint of syncope.
View Article and Find Full Text PDFThis research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses.
View Article and Find Full Text PDFProton transfer polymerization between thiol and epoxide groups is shown to be an adaptable and utilitarian method for the synthesis of hydrogels. For instance, the polymerization catalyst can be organic or inorganic, and the polymerization medium can be pure water, buffer solutions, or organic solvents. The gelation mechanism can be triggered at ambient conditions, at a physiological temperature of 37 °C, or through using light as an external stimulus.
View Article and Find Full Text PDFAlignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes.
View Article and Find Full Text PDFSelf-assembly of a binary mixture of poly(styrene)336-block-poly(4-vinyl pyridine)25 (PS336-b-P4VP25) and poly(ethylene glycol)113-block-poly(4-hydroxy styrene)25 (PEG113-b-P4HS25) is shown to give rise to a cylindrical morphology in thin films through pyridine/phenol-based hetero-complementary hydrogen bonding interactions between the P4VP and P4HS copolymer segments. Removal of the cylindrical phase (PEG-b-P4HS) allowed access to porous materials having a pore surface decorated with P4VP polymer blocks. These segments could be transformed into cationic polyelectrolytes through quaternization of the pyridine nitrogen atom.
View Article and Find Full Text PDFCatalytic action of an enzyme is shown to transform a non-assembling block copolymer, composed of a completely non-natural repeat unit structure, into a self-assembling polymer building block. To achieve this, poly(styrene) is combined with an enzyme-sensitive methacrylate-based polymer segment carrying carefully designed azobenzene side chains. Once exposed to the enzyme azoreductase, in the presence of coenzyme NADPH, the azobenzene linkages undergo a bond scission reaction.
View Article and Find Full Text PDFChem Commun (Camb)
December 2013
A novel and modular strategy has been developed for the preparation of reactive and functionalized hydrogels. In this strategy, thiol-epoxy coupling chemistry was employed for the formation of a hydrophilic network. The hydroxyl groups, generated during the coupling process, were then engaged in anchoring a fluorescent probe to the hydrogel scaffold.
View Article and Find Full Text PDFJ Am Chem Soc
September 2013
In this study, we investigate the potential of an artificial structural motif, azobenzene, in the preparation of enzyme sensitive polymeric nanostructures. For this purpose, an azobenzene linkage is established at the copolymer junction of an amphiphilic diblock copolymer. This polymer assembles into a micellar structure in water.
View Article and Find Full Text PDFA diblock copolymer is designed to have incompatible blocks, unsymmetrical block lengths, and a reversible linkage. This copolymer self-assembles into nanostructured cylindrical morphology in thin films. Removal of the nanosized cylinders by breaking the reversible linkage then affords nanoporous membranes featuring a chemically reactive functionality in the pores.
View Article and Find Full Text PDFCononsolvency-induced micellization kinetics of a pyrene end-labeled diblock copolymer of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate, Py-PNIPAM-b-POEGMA, was investigated in detail via a combination of stopped-flow light-scattering and fluorescence techniques. Upon a stopped-flow jump from pure methanol to proper methanol/water mixtures, scattered light intensity exhibited an initial increase and then stabilized out; whereas the time-dependence of monomer to excimer fluorescence intensity ratios (I E/I M) revealed an abrupt increase followed by a gradual decrease to plateau values. The dynamic traces of scattered intensity can be well fitted by double exponential functions, the obtained tau 1, scat and tau 2, scat can be ascribed to processes of forming quasi-equilibrium micelles and their relaxation into final equilibrium states, respectively.
View Article and Find Full Text PDFWell-defined AB2 Y-shaped miktoarm star polypeptide copolymer, PZLL-b-(PBLG)2, was synthesized via a combination of ring-opening polymerization (ROP) of alpha-amino acid N-carboxyanhydride (NCA) and click chemistry, where PZLL is poly(epsilon-benzyloxycarbonyl-L-lysine) and PBLG is poly(gamma-benzyl-L-glutamate). First, two types of primary-amine-containing initiators, N-aminoethyl 3,5-bis(propargyloxyl)-benzamide and 3-azidopropylamine, were synthesized and employed for the ROP of NCA, leading to the formation of dialkynyl-terminated PZLL and azide-terminated PBLG, dialkynyl-PZLL and PBLG-N3, respectively. The subsequent copper(I)-catalyzed cycloaddition reaction between dialkynyl-PZLL and slightly excess PBLG-N3 led to facile preparation of PZLL-b-(PBLG)2 Y-shaped miktoarm star polypeptide copolymer.
View Article and Find Full Text PDFA polypeptide hybrid double hydrophilic diblock copolymer (DHBC), poly( N-isopropylacrylamide)- b-poly( l-glutamic acid) (PNIPAM- b-PLGA), was synthesized via the ring-opening polymerization of gamma-benzyl- l-glutamate N-carboxyanhydride (BLG-NCA) using monoamino-terminated PNIPAM as the macroinitiator, followed by deprotection of benzyl groups under alkaline conditions. Containing a thermoresponsive PNIPAM block and a pH-responsive PLGA block, the obtained polypeptide hybrid diblock copolymer molecularly dissolves in aqueous solution at alkaline pH and room temperature but supramolecularly self-assembles into PNIPAM-core micelles at alkaline pH and elevated temperatures and PLGA-core micelles at acidic pH and room temperature accompanied with coil-to-helix transition of the PLGA sequence. The pH- and thermoresponsive "schizophrenic" micellization behavior of PNIPAM- b-PLGA diblock copolymer has been investigated by (1)H NMR, optical transmittance, fluorescence probe measurement, transmission electron microscopy (TEM), dynamic and static laser light scattering (LLS), and circular dichroism (CD) spectroscopy.
View Article and Find Full Text PDF