Publications by authors named "Jingyi Kong"

Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy.

View Article and Find Full Text PDF

The lack of suitable lightweight current collectors is one of the primary obstacles preventing the energy density of aqueous lithium-ion batteries (ALIBs) from becoming competitive. Using silver nanowire (AgNW) films as current collectors and a molecular crowding electrolyte, we herein report the fabrication of ALIBs with relatively good energy densities. In the 2 m LiTFSI-94% PEG-6% HO solution, the AgNW films with a sheet resistance of less than 1.

View Article and Find Full Text PDF

The molecular mechanisms underlying restrictive cardiomyopathy (RCM) are not fully understood. Hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) is a vital element of Endosomal sorting required for transport (ESCRT), which mediates protein sorting for degradation and is crucial for protein homeostasis (proteostasis) maintenance. However, the physiological function and underlying mechanisms of HGS in RCM are unexplored.

View Article and Find Full Text PDF

The emerging personal healthcare has significantly propelled the development of advanced wearable electronics with novel functions of providing diagnostic information and point-of-care therapies for specific diseases. However, it is still challenging to simultaneously achieve high sensitivity for health biomonitoring and multifunction integration for point-of-care therapies in a one single flexible, lightweight yet robust fiber-based device. Here, a knittable and sewable spandex yarn with conductive nacre-mimetic composite coating has been developed through an alternant dip-coating method employing MXene nanosheets as the "brick" and polydopamine (PDA)/Ni as the "mortar".

View Article and Find Full Text PDF

The solution-processed layer-by-layer (LBL) method has potential to achieve high-performance polymer solar cells (PSCs) due to its advantage of enriching donors near the anode and acceptors near the cathode. However, power conversion efficiencies (PCEs) of the LBL-PSCs are still significantly lower than those of conventional one-step-processed PSCs (OS-PSCs). A method to solve the critical problems in LBL-PSCs is reported here.

View Article and Find Full Text PDF