Publications by authors named "Jingye Cai"

This article is concerned with the deterministic finite automaton-mode-dependent (DFAMD) exponential stability problem of impulsive switched memristive neural networks (SMNNs) with aperiodic asynchronous attacks and the network covert channel. First, unlike the existing literature on SMNNs, this article focuses on DFA to drive mode switching, which facilitates precise system behavior modeling based on deterministic rules and input characters. To eliminate the periodicity and consistency constraints of traditional attacks, this article presents the multichannel aperiodic asynchronous denial-of-service (DoS) attacks, allowing for the diversity of attack sequences.

View Article and Find Full Text PDF

Recent advancements in retinal vessel segmentation, which employ transformer-based and domain-adaptive approaches, show promise in addressing the complexity of ocular diseases such as diabetic retinopathy. However, current algorithms face challenges in effectively accommodating domain-specific variations and limitations of training datasets, which fail to represent real-world conditions comprehensively. Manual inspection by specialists remains time-consuming despite technological progress in medical imaging, underscoring the pressing need for automated and robust segmentation techniques.

View Article and Find Full Text PDF

Single image super-resolution (SISR) refers to the reconstruction from the corresponding low-resolution (LR) image input to a high-resolution (HR) image. However, since a single low-resolution image corresponds to multiple high-resolution images, this is an ill-posed problem. In recent years, generative model-based SISR methods have outperformed conventional SISR methods in performance.

View Article and Find Full Text PDF

Vitamin D deficiency (VDD) causes a wide range of health problems, including anemia in infants. If not treated promptly, it may create serious issues for infants with long-term impacts. Therefore, a satisfactory solution to this problem is required.

View Article and Find Full Text PDF

This article focuses on the intralayer-dependent impulsive synchronization of multiple mismatched multilayer neural networks (NNs) with mode-mixed effects. Initially, a novel multilayer NN model that removes the one-to-one interlayer coupling constraint and introduces nonidentical model parameters is first established to meet diverse modeling requirements in complex applications. To help the multilayer target NNs with mismatched connection coefficients and time delays achieve synchronization, the hybrid controller is designed using intralayer-dependent impulsive control and switched feedback control approaches.

View Article and Find Full Text PDF

In recent years, deep learning has been applied to many medical imaging fields, including medical image processing, bioinformatics, medical image classification, segmentation, and prediction tasks. Computer-aided detection systems have been widely adopted in brain tumor classification, prediction, detection, diagnosis, and segmentation tasks. This work proposes a novel model that combines the Bayesian algorithm with depth-wise separable convolutions for accurate classification and predictions of brain tumors.

View Article and Find Full Text PDF

To alleviate the social contradiction between limited medical resources and increasing medical needs, the medical image-assisted diagnosis based on deep learning has become the research focus in Wise Information Technology of med. Most of the existing medical segmentation models based on Convolution or Transformer have achieved relatively sound effects. However, the Convolution-based model with a limited receptive field cannot establish long-distance dependencies between features as the Network deepens.

View Article and Find Full Text PDF

Coronavirus disease has rapidly spread globally since early January of 2020. With millions of deaths, it is essential for an automated system to be utilized to aid in the clinical diagnosis and reduce time consumption for image analysis. This article presents a generative adversarial network (GAN)-based deep learning application for precisely regaining high-resolution (HR) CXR images from low-resolution (LR) CXR correspondents for COVID-19 identification.

View Article and Find Full Text PDF

Computed Tomography has become a vital screening method for the detection of coronavirus 2019 (COVID-19). With the high mortality rate and overload for domain experts, radiologists, and clinicians, there is a need for the application of a computerized diagnostic technique. To this effect, we have taken into consideration improving the performance of COVID-19 identification by tackling the issue of low quality and resolution of computed tomography images by introducing our method.

View Article and Find Full Text PDF

It is a well-known fact that diabetic retinopathy (DR) is one of the most common causes of visual impairment between the ages of 25 and 74 around the globe. Diabetes is caused by persistently high blood glucose levels, which leads to blood vessel aggravations and vision loss. Early diagnosis can minimise the risk of proliferated diabetic retinopathy, which is the advanced level of this disease, and having higher risk of severe impairment.

View Article and Find Full Text PDF

Pneumonia is a prevalent severe respiratory infection that affects the distal and alveoli airways. Across the globe, it is a serious public health issue that has caused high mortality rate of children below five years old and the aged citizens who must have had previous chronic-related ailment. Pneumonia can be caused by a wide range of microorganisms, including virus, fungus, bacteria, which varies greatly across the globe.

View Article and Find Full Text PDF

This article investigates the problem of relaxed exponential stabilization for coupled memristive neural networks (CMNNs) with connection fault and multiple delays via an optimized elastic event-triggered mechanism (OEEM). The connection fault of the two or some nodes can result in the connection fault of other nodes and cause iterative faults in the CMNNs. Therefore, the method of backup resources is considered to improve the fault-tolerant capability and survivability of the CMNNs.

View Article and Find Full Text PDF
Article Synopsis
  • - The article discusses a new approach to synchronizing coupled memristive neural networks (CMNNs) that addresses mismatched parameters in dimensions, connection weights, and time delays, using a novel auxiliary-state variable model.
  • - It introduces a topology-based probability impulsive mechanism (TPIM) for better information transmission within the network, improving robustness against various nonideal factors compared to traditional methods.
  • - The research employs the Lyapunov-Krasovskii functional and inequality techniques to derive conditions for exponential synchronization across continuous and discrete systems on time scales, and validates the findings with a numerical example.
View Article and Find Full Text PDF

This paper investigates the exponential synchronization issue of stochastic delayed memristive neural networks (SDMNNs) via a novel hybrid control (HC), where impulsive instants are determined by the state-dependent trigger condition. The switching and quantification strategies are applied to the event-based impulsive controller to cope with the challenges induced concurrently by interval parameters, impulses, stochastic disturbance and time-varying delays. Furthermore, the control costs can be reduced and communication channels and bandwidths can be saved by using this designed controller.

View Article and Find Full Text PDF