Publications by authors named "Jingya Xie"

Metasurfaces are emerging as powerful tools for manipulating complex light fields, offering enhanced control in free space and on-chip waveguide applications. Their ability to customize refractive indices and dispersion properties opens up new possibilities in light guiding, yet their efficiency in exciting guided waves, particularly through metallic structures, is not fully explored. Here, we present a new method for exciting terahertz (THz) guided waves using Fabry-Perot (FP) cavity-assisted metasurfaces that enable spin-selective directional coupling and mode selection.

View Article and Find Full Text PDF

The sensitivity of fluorescent sensors is crucial for their applications. In this study, we propose a molecularly imprinted polymer (MIP)-coated optical fibre-hybrid waveguide-fibre sensing structure for ultrasensitive fluorescence detection. In such a structure, the MIP coated-hybrid waveguide acts as a sensing probe, and the two co-axially connected optical fibres act as a highly efficient probing light launcher and a fluorescence signal collector, respectively.

View Article and Find Full Text PDF

Unlabelled: This article describes a novel front-face synchronous fluorescence spectroscopy (FFSFS) method for the fast and non-invasive authentication of ground roasted Arabica coffee adulterated with roasted maize and soybean flours. The detection was based on the different composition of fluorescent Maillard reaction products and caffeine in roasted coffee and cereal flours. For each roasted maize or soybean adulterant flour (5-40 wt%), principal component analysis coupled with linear discriminant analysis (PCA-LDA) was used for qualitative discrimination.

View Article and Find Full Text PDF

Fluorescence quenching induced by competitive absorption between different components of solid foods was observed for the first time. By using front-face synchronous fluorescence spectroscopy (FFSFS) and fluorescence titration, competitive absorption between maize flour and turmeric powder was proven to occur between phenolic acids in maize flour and curcumin in turmeric powder. FFSFS was applied for the rapid and non-destructive determination of maize flour adulterated in turmeric powder.

View Article and Find Full Text PDF

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable.

View Article and Find Full Text PDF

Attenuated total reflection (ATR) geometry is a suitable choice for in vivo measurements of human skin due to the deep penetration of the field into the sample and since it makes it easy to measure the reference spectrum. On the other hand, there are several critical factors that may affect the terahertz (THz) response in these kinds of experiments. Here, we analyse in detail the influence of the following factors: the contact positions between the thumb and the prism, the contact pressure, the contact duration, and the materials of the prism.

View Article and Find Full Text PDF

Terahertz (THz) fundamental "building blocks" equivalent to those used in multi-functional electronic circuits are very helpful for actual applications in THz data-processing technology and communication. Here, we theoretically and experimentally demonstrate a THz temporal differentiator based on an on-chip high-quality (Q) factor resonator. The resonator is made of low-loss high-resistivity silicon material in a monolithic, integrated platform, which is carefully designed to operate near the critical coupling region.

View Article and Find Full Text PDF

Achromatic focusing is essential for broadband operation, which has recently been realised from visible to infrared wavelengths using a metasurface. Similarly, multi-terahertz functional devices can be encoded in a desired metasurface phase profile. However, metalenses suffer from larger chromatic aberrations because of the intrinsic dispersion of each unit element.

View Article and Find Full Text PDF

We propose a flexibly designed photonic system based on ultrathin corrugated metallic "H-bar" waveguide that supports spoof surface plasmon polariton (SPP) at microwave frequencies. Five designs were presented, in order to demonstrate flexibility according to varying height, period, core width, rotation, and shifting on the "H-bar" unit of the waveguide. The propagation constant between two hybrid designs of period and height structure was then shown in order to study the coupling effect.

View Article and Find Full Text PDF
Article Synopsis
  • - The development of low-energy lasers using atomically thin transition metal dichalcogenides (TMDCs) is important for advancing technologies like optical communications and flexible displays, but current methods lack reliability and consistency.
  • - This research introduces a new design for creating large-scale lasing from high-quality monolayer MoS films produced via chemical vapor deposition (CVD), achieving strong continuous-wave lasing across a wide temperature range.
  • - The improved lasing performance is attributed to effective spatial confinement of charge carriers and enhanced spontaneous emission efficiency from silica microsphere cavities, paving the way for affordable and scalable TMDC-based laser technologies.
View Article and Find Full Text PDF

We theoretically realize the Fano resonance with a high quality factor of 10 using a structure, which is constructed from three one-dimensional photonic crystals and a defect layer. The emerged Fano resonance can be attributed to the weak coupling between a Fabry-Perot cavity mode and a topological edge state mode provided by the topological photonic crystal heterostructure. Moreover, we experimentally reproduce this Fano resonance in the optical communication range with a high quality of 10.

View Article and Find Full Text PDF

A high extinction ratio (ER) electromagnetically induced transparency (EIT) analogue based on single-layer metamaterial is designed and experimentally demonstrated in this paper. This design involves four mirror-like symmetrically coupled split ring resonators (SRRs) that exhibit a bright-dark-dark-bright mode configuration. The EIT-like effect is realized by coupling between the bright resonators and dark resonators.

View Article and Find Full Text PDF

We present the theoretical analysis and experimental demonstration of adiabatic microring resonators. The resonators are halfway between microdisk and microring preserving the good properties of both the microdisk (high Q-factor) and the microring (internal mode rejection). Device modeling based on the coupled-mode theory suggests that both the internal and external decay rates should be low in order to obtain high-Q and high extinction ratio resonances.

View Article and Find Full Text PDF

We design, fabricate, and characterize a 7-bit reconfigurable optical true time delay line consisting of Mach-Zehnder interferometer (MZI) switches on the silicon photonics platform. Variable optical attenuators (VOAs) are embedded to suppress the inter-symbol crosstalk caused by the finite extinction ratio of switches. The device can provide a maximum of 1.

View Article and Find Full Text PDF

We explore the selective excitation of resonances in microring resonators with a pulley-coupling structure. Due to the wavelength dispersion of coupling coefficient, only the resonances near critical coupling exhibit pronounced sharp notches in the transmission spectrum. Experimental results show that the resonance extinction ratio is a strong function of wavelength.

View Article and Find Full Text PDF

We present a reflective-type optical delay line using waveguide side-coupled 13 microring resonators terminated with a sagnac loop reflector. Light passes through the microring resonator sequence twice, doubling the delay-bandwidth product. Group delay is tuned by p-i-p type microheaters integrated directly in the microring waveguides.

View Article and Find Full Text PDF

We present a CMOS-compatible athermal tunable silicon optical lattice filter composed of 10 cascaded 2 × 2 asymmetric Mach-Zehnder interferometers. Active tuning experiments show that the filter central wavelength can be red-/blue-shifted by 13.1/21.

View Article and Find Full Text PDF

We report tunable two-stage self-coupled optical waveguide (SCOW) resonators composed of a pair of mirror-imaged single SCOW resonators connected by a phase shifter in between. Experimental results show that the coupled-resonator-induced-transparency and high-order bandstop filtering characteristics can be obtained in the transmission spectra of the devices with two different configurations. The resonance spectrum can be tuned by using either a p-i-p microheater or a p-i-n diode in the phase shifter.

View Article and Find Full Text PDF

We experimentally demonstrate tunable silicon comb filters based on Fabry-Perot (FP) resonators composed of two Sagnac loop mirrors. The comb filter resolves up to 54 comb lines with a 115 GHz channel spacing over a spectral range from 1510 to 1560 nm. The comb line extinction ratio is ~26.

View Article and Find Full Text PDF