Ecotoxicol Environ Saf
January 2023
Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content.
View Article and Find Full Text PDFThe presence of dissolved organic matter (DOM) strongly influences the bioavailability of metals in aquatic environments; however, the association between the binding activities and the concentrations of DOM compositions is not well documented, leading to uncertainties in metal toxicity assessment. We creatively quantify the mitigation and acceleration effects of DOM compositions on cadmium (Cd) bioaccumulation and toxicity in zebrafish larvae using abiotic ligand (ABLs) and biotic ligand (BLs) in a toxicokinetic-toxicodynamic (TK-TD) model. The BL-TK-TD model could accurately predict the protective effect of fulvic acid while overestimating the complexing capacity of citric acid.
View Article and Find Full Text PDFMultiple water chemistry parameters influence metal toxicity in natural waters and accurate quantification of those influences may accelerate the development of site-specific water quality criteria (WQC) and further execute metal risk assessment for better protection of aquatic biota. Here, we investigated the effects of water chemistry parameters on copper (Cu) toxicity of larval zebrafish (Danio rerio) and then incorporated the effects of key parameters in a Toxicokinetic and Toxicodynamic (TK-TD) model. Further, the proposed TK-TD model was used to predict Cu toxicity in laboratory artificial waters as well as natural water samples.
View Article and Find Full Text PDF