Objective: To characterize sleep duration and investigate its association with quality of life among Parkinson's Disease (PD) patients.
Methods: In this multicenter cross-sectional study, 970 PD patients were divided into five groups based on self-reported sleep duration: <5, ≥5 to <6, ≥6 to <7, ≥7 to ≤8, and >8 h. The quality of life was evaluated using the 39-Item Parkinson's Disease Questionnaire (PDQ-39).
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment.
View Article and Find Full Text PDFEpilepsy is a common and serious complication of subarachnoid hemorrhage (SAH), giving rise to increased morbidity and mortality. It's difficult to identify patients at high risk of epilepsy and the application of anti-epileptic drugs (AEDs) following SAH is a controversial topic. Therefore, it's pressingly needed to gain a better understanding of the risk factors, underlying mechanisms and the optimization of therapeutic strategies for epilepsy after SAH.
View Article and Find Full Text PDFPurpose: In this study, we constructed novel brain-targeting complexes (U2-AuNP) by conjugating aptamer U2 to the gold nanoparticle (AuNPs) surface as a promising option for GBM therapy.
Materials And Methods: The properties of the U2-AuNP complexes were thoroughly characterized. Then, we detected the in vitro effects of U2-AuNP in U87-EGFRvIII cell lines and the in vivo antitumor effects of U2-AuNP in GBM-bearing mice.