N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids , specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver.
View Article and Find Full Text PDFThe dewetting of thin Pt films on different surfaces is investigated as a means to provide the patterning for the top-down fabrication of GaN nanowire ensembles. The transformation from a thin film to an ensemble of nanoislands upon annealing proceeds in good agreement with the void growth model. With increasing annealing duration, the size and shape uniformity of the nanoislands improves.
View Article and Find Full Text PDFRisk prediction and disease prevention are the innovative care challenges of the 21st century. Apart from freeing the individual from the pain of disease, it will lead to low medical costs for society. Until very recently, risk assessments have ushered in a new era with the emergence of omics technologies, including genomics, transcriptomics, epigenomics, proteomics, and so on, which potentially advance the ability of biomarkers to aid prediction models.
View Article and Find Full Text PDFChanges in the structure of RNA and protein, have an important impact on biological functions and are even important determinants of disease pathogenesis and treatment. Some genetic variations, including copy number variation, single nucleotide variation, and so on, can lead to changes in biological function and increased susceptibility to certain diseases by changing the structure of RNA or protein. With the development of structural biology and sequencing technology, a large amount of RNA and protein structure data and genetic variation data resources has emerged to be used to explain biological processes.
View Article and Find Full Text PDFN6-methyladenosine (mA) is one of the most abundant chemical modifications on RNA and can affect the occurrence and development of diseases. Some studies have shown that the expressions of some mA-related genes are significantly regulated by single nucleotide variants (SNV). However, the function of mA-associated single nucleotide polymorphisms (mA-SNP) remains unclear in multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFFlexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity.
View Article and Find Full Text PDFAdvances in sequencing technologies have led to the rapid growth of multi-omics data on rheumatoid arthritis (RA). However, a comprehensive database that systematically collects and classifies the scattered data is still lacking. Here, we developed the Rheumatoid Arthritis Bioinformatics Center (RABC, http://www.
View Article and Find Full Text PDFThe performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgF interlayer with thickness of ~1 nanometer at the perovskite/C interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.
View Article and Find Full Text PDFTwo-dimensional transition metal carbides (MXenes) are of great interest as electrode materials for a variety of applications, including solar cells, due to their tunable optoelectronic properties, high metallic conductivity, and attractive solution processability. However, thus far, MXene electrodes have only been exploited for lab-scale device applications. Here, to demonstrate the potential of MXene electrodes at an industry-relevant level, we implemented a scalable spray coating technique to deposit highly conductive (.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
In this work, we present a simple and efficient solution-doping process for preparing high-quality polycrystalline silicon (poly-Si)-based passivating contacts. Commercial phosphorus or boron-doping solutions are spin-coated on crystalline silicon (c-Si) wafers that feature SiO/poly-Si layers; the doping process is then activated by thermal annealing at high temperatures in a nitrogen atmosphere. With optimized n- and p-type solution doping and thermal annealing, n- and p-type poly-Si passivating contacts featuring simultaneously a low contact recombination parameter () of 2.
View Article and Find Full Text PDFHigh-quality carrier-selective contacts with suitable electronic properties are a prerequisite for photovoltaic devices with high power conversion efficiency (PCE). In this work, an efficient electron-selective contact, titanium oxynitride (TiO N ), is developed for crystalline silicon (c-Si) and organic photovoltaic devices. Atomic-layer-deposited TiO N is demonstrated to be highly conductive with a proper work function (4.
View Article and Find Full Text PDFMalignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts.
View Article and Find Full Text PDFBody weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice.
View Article and Find Full Text PDFThe omega-3 polyunsaturated fatty acids (ω-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), derived mainly from fish oil, play important roles in brain development and neuroplasticity. Here, we reported that application of ω-3 PUFAs significantly protected mouse neural progenitor cells (NPCs) against H2O2-induced oxidative injury. We also isolated NPCs from transgenic mice expressing the Caenorhabditis elegans fat-1 gene.
View Article and Find Full Text PDFWe developed and validated a rapid, sensitive, and specific liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of global DNA methylation in tissue. DNA was extracted by phenol-chloroform, hydrolyzed using 88% formic acid at 140°C, spiked with cytosine-2,4-(13)C(15)N(2) as internal standard, evaporated under nitrogen, reconstituted in methanol, and analyzed by LC-MS/MS in multiple reaction monitoring mode to reflect the global DNA methylation of the tissue. The method was linear throughout the range of clinical interest and had good sensitivity, with a limit of quantification of 0.
View Article and Find Full Text PDF