Precise identification of glioblastoma (GBM) microinfiltration, which is essential for achieving complete resection, remains an enormous challenge in clinical practice. Here, the study demonstrates that Raman spectroscopy effectively identifies GBM microinfiltration with cellular resolution in clinical specimens. The spectral differences between infiltrative lesions and normal brain tissues are attributed to phospholipids, nucleic acids, amino acids, and unsaturated fatty acids.
View Article and Find Full Text PDFIntroduction: Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies.
View Article and Find Full Text PDFA dual gold nanoprobe system was designed for portable Raman detection of sialic acid (SA) for tumor identification. The dual gold nanoprobe system contained two gold nanoprobes, Au10-DTTC/PEG-PBA and Au40-PEG-SA. Au10-DTTC/PEG-PBA was constructed on a 10 nm gold nanoparticle modified with 3,3'-diethylthia tricarbocyanine iodide (DTTCI) as the Raman reporter and 3-aminophenylboronic acid (APBA) through a thiol PEG succinimidyl carboxymethyl ester (HS-PEG-NHS) linker for specific recognition of SA.
View Article and Find Full Text PDF-GlcNAcylation is involved in many biological processes including cancerization. Nevertheless, its quantification in single living cells is still a bottleneck. Here we develop a quantitative SERS imaging strategy for mapping the -GlcNAcylation distribution of single living cells.
View Article and Find Full Text PDFDue to the strong and tunable photothermal effect, metallic nanoparticles are of enormous interest in light-activated biomedical applications, such as photoacoustic imaging (PAI) and photothermal therapy (PTT). However, the photothermal conversion efficiency (PCE) of existing metallic photothermal agents is still unsatisfactory. Herein, we develop an efficient photothermal theranostic agent based on a gold nanostar@polyaniline core-shell nanocomposite with high PCE for PAI-guided PTT at a low dosage.
View Article and Find Full Text PDFThe plasma membrane repair holds significance for maintaining cell survival and homeostasis. To achieve the sensitive visualization of membrane repair process for revealing its mechanism, this work designs a perforation-induced surface-enhanced Raman spectroscopy (SERS) strategy by conjugating Raman reporter (4-mercaptobenzoic acid) loaded gold nanostars with pore-forming protein streptolysin O (SLO) to induce the SERS signal on living cells. The SERS signal obviously decreases with the initiation of membrane repair and the degradation of SLO pores due to the departure of gold-nanostar-conjugated SLO.
View Article and Find Full Text PDFThis work designs a convenient method for fabrication of surface-enhanced Raman scattering (SERS) devices by loading gold nanostars (AuNSs) on a flat filter support with vacuum filtration. The dense accumulation of AuNSs results in a strong sensitization to SERS signal and shows sensitive response to gaseous metabolites of bacteria, which produces a SERS "nose" for rapid point-of-care monitoring of these metabolites. The "nose" shows good reproducibility and stability and can be used for SERS quantitation of a gaseous target with Raman signal.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
The traditional colony culture method for detection of pathogens is subjected to the laborious and tedious experimental procedure, which limits its application in point-of-care (POC) testing and quick diagnosis. This work designs an intelligent adhesive tape as a "three-in-one" platform for rapid sampling, photocontrolled release, and surface-enhanced Raman scattering (SERS) detection of pathogens from infected wounds. This tape is constructed by encapsulating densely packed gold nanostars as SERS substrates between two pieces of graphene and modified with a synthetic -nitrobenzyl derivative molecule to form an artificial biointerface for highly efficient pathogen capture via electrostatic interaction.
View Article and Find Full Text PDFQuorum sensing (QS) is crucial for bacterial survival and activity. Although detecting related signaling metabolites can reveal QS, a versatile platform for convenient real-time imaging of their secretion in the context of bacterial biofilms along with inhibition to the growth of biofilms is still highly desired. Here we develop a flexible sticky note with a sandwich structure by encapsulating gold nanostars between two pieces of hexagonal boron nitride layers, which can be easily pasted on natural biofilms to monitor in real-time the secreted signaling molecule by SERS imaging with high sensitivity and spatiotemporal resolution.
View Article and Find Full Text PDFAnthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway.
View Article and Find Full Text PDFThis work proposes a facile way to modulate the conformation of DNA from the "Lie-Down" to the "Stand-Up" conformation on the surface of multibranched gold nanoparticles (AuNPs). This is realized by regulating the length of polyadenine (polyA) linked to the DNA sequence and/or the hybridization of this sequence with the target DNA, and can be monitored by the Raman signal owing to the excellent performance of multibranched AuNPs (AuNSs) as a surface-enhanced Raman scattering (SERS) substrate and the distance change between the Raman reporter and the substrate. The probable mechanism, which depends on the repulsion of polyA from the sequence and the tip assembly, has also been probed through theoretical simulation using the finite difference time domain method.
View Article and Find Full Text PDFIn recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity.
View Article and Find Full Text PDF