Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.
View Article and Find Full Text PDFIn certain highly regenerative animals, cellular dedifferentiation occurs after injury, allowing specialized cells to become progenitor cells for regeneration. However, this capacity is restricted in human cells due to reduced plasticity. Here, we introduce a chemical-induced dedifferentiation approach that reverts the differentiated cells to a progenitor-like state, conferring the features of human limb bud cells from human adult somatic cells.
View Article and Find Full Text PDFHumic acids (HAs) widely exist in water environment, and has an important impact on the adsorption of pollutants. Herein, HAs (both dissolved and coated) was employed to assess the effect on the removal of the organic contaminant tetracycline (TC) by KCO modified magnetic biochar (KMBC). Results showed that low concentration of dissolved HAs promoted TC removal, likely due to a bridging effect, while higher concentration of dissolved HAs inhibited TC adsorption because of the competition of adsorption sites on KMBC.
View Article and Find Full Text PDFAfter separation of bacterial colonies on solid plates, purification, and screening through the agar cup-plate method, an antibiotic-resistant bacterial isolate was obtained, and named strain L20190601, the 16S rRNA gene sequence data of strain L20190601 to GenBank, NCBI have provided GenBank accession number MW931615. 16S rRNA gene sequencing revealed that this isolate was highly similar to a number of Streptomyces species. Among them, the homology with S.
View Article and Find Full Text PDFThe advances in cluster-assembled materials where clusters serve as building blocks have opened new opportunities to develop ever more sensitive gas sensors. Here, using density functional theory calculations, the structural and electronic properties of cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters and their application as gas sensors have been investigated. Our results show that the nanowires can be produced via the coalescence of stable M12N12 fullerene-like clusters.
View Article and Find Full Text PDFThrough the enhanced photothermal effect, which was achieved using a silver film, a low power weakly focused continuous-wave laser (532 nm) was applied to create a vapor bubble. A convective flow was formed around the bubble. Microparticles dispersed in water were carried by the convective flow to the vapor bubble and accumulated on the silver film.
View Article and Find Full Text PDFWe experimentally demonstrate a compact, all-solid-state 532 nm semi-Gaussian laser beam (SGB) source based on a 1064 nm laser and a transversely varying periodically-poled LiTaO3 (TPPLT) crystal as the laser beam shaper as well as the nonlinear frequency converter. We have used the designed TPPLT crystal to obtain a neat 532nm SGB with the quality of QSGB=1:17.5 by a single-pass second harmonic generation.
View Article and Find Full Text PDFAn otherwise dark magnetic dipole resonance in a split-ring resonator can be excited electrically with a Fano-type profile once the symmetric environment for this resonator is broken with respect to the polarized electric-field direction of incident waves. When this asymmetrically induced narrow resonance coincides with a broad dipolar resonance at an identical frequency regime, the metamaterial analogue of electromagnetically-induced transparency (EIT) window can be formed. We demonstrate that this environmental-asymmetry condition can be introduced dielectrically as well as plasmonically, either resonantly or nonresonantly, which indicates the plasmon coupling between different resonant modes is not responsible for the dark mode excitation.
View Article and Find Full Text PDFWe demonstrate that left-handed resonance transmission from metallic metamaterial, composed of periodically arranged double rings, can be extended to visible spectrum by introducing an active medium layer as the substrate. The severe ohmic loss inside metals at optical frequencies is compensated by stimulated emission of radiation in this active system. Due to the resonance amplification mechanism of recently proposed lasing spaser, the left-handed transmission band can be restored up to 610 nm wavelength, in dependence on the gain coefficient of the active layer.
View Article and Find Full Text PDF