Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1-1 (som1-1), also exhibiting root hair developmental defects.
View Article and Find Full Text PDFThe transcription of photosynthesis genes in chloroplasts is largely mediated by the plastid-encoded RNA polymerase (PEP), which resembles prokaryotic-type RNA polymerases, but with plant-specific accessory subunits known as plastid transcriptionally active chromosome proteins (pTACs) or PEP-associated proteins (PAPs). However, whether additional factors are involved in the biogenesis of PEP complexes remains unknown. Here, we investigated the function of an essential gene, PALE CRESS (PAC), in the accumulation of PEP complexes in chloroplasts.
View Article and Find Full Text PDFPlant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT-severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1-mediated cMT severing and ordering remains unclear.
View Article and Find Full Text PDFPlant Physiol
September 2020
The leaf margin is a fascinating feature of leaf morphology, contributing to the incredible diversity of leaf shapes and forms. As a central regulator of plant organ separation and margin development, CUP-SHAPED COTYLEDON2 (CUC2), a NAM, ATAF1, 2, CUC2 (NAC)-family transcription factor, governs the extent of serrations along the leaf margin. CUC2 activity is tightly regulated at transcriptional and posttranscriptional levels.
View Article and Find Full Text PDFChloroplast development and photosynthesis require the proper assembly and turnover of photosynthetic protein complexes. Chloroplasts harbor a repertoire of proteases to facilitate proteostasis and development. We have previously used an Arabidopsis leaf variegation mutant, (), defective in thylakoid FtsH protease complexes, as a tool to dissect the genetic regulation of chloroplast development.
View Article and Find Full Text PDFChloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in , a set of suppressor mutants of () have been identified. In this research, we reported the identification of another new suppressor locus, (), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu.
View Article and Find Full Text PDFThe single-celled trichomes of have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, (), with a reduced trichome branching phenotype.
View Article and Find Full Text PDFProtein homeostasis is essential for cellular functions and longevity, and the loss of proteostasis is one of the hallmarks of senescence. Autophagy is an evolutionarily conserved cellular degradation pathway that is critical for the maintenance of proteostasis. Paradoxically, autophagy deficiency leads to accelerated protein loss by unknown mechanisms.
View Article and Find Full Text PDFThe homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in plant development and morphogenesis as well as responses to biotic and abiotic stresses. In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I transcription factor.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2018
Plant trichome has long been selected as a model system to study the regulatory mechanism during cell development due to its unique growth characteristics. In an effort to explore new components that contribute to trichome development, we performed large-scale forward genetic screening in Arabidopsis, and found two recessive mutants with significant trichome branching defects, both of which display one branched trichomes. After map-based cloning, genetic complementation experiments, we confirmed that they are new alleles of STICHEL (STI) that has been reported to act as a key regulator of trichome branching.
View Article and Find Full Text PDFIn higher plants, the development of functional chloroplasts is essential for photosynthesis and many other physiological processes. With a long-term goal of elucidating the genetic regulation of chloroplast development, we identified two allelic leaf variegation mutants, () and . Both mutants showed a distinct leaf reticulation phenotype of yellow paraveinal regions and green interveinal regions, and the leaf reticulation phenotype correlated with photosynthetic defects.
View Article and Find Full Text PDFThe development of functional chloroplasts relies on the fine coordination of expressions of both nuclear and chloroplast genomes. We have been using the Arabidopsis () () leaf variegation mutant as a tool to dissect the regulation of chloroplast development. In this work, we screened for genetic enhancer modifiers termed () mutants and report the characterization of the first locus, We showed that encodes the cytosolic 80S ribosome 40S small subunit protein RPS21B and the loss of causes the enhancement of leaf variegation.
View Article and Find Full Text PDFChloroplast development requires the coordinated expressions of nuclear and chloroplast genomes, and both anterograde and retrograde signals exist and work together to facilitate this coordination. We have utilized the Arabidopsis yellow variegated (var2) mutant as a tool to dissect the genetic regulatory network of chloroplast development. Here, we report the isolation of a new (to our knowledge) var2 genetic suppressor locus, SUPPRESSOR OF VARIEGATION9 (SVR9).
View Article and Find Full Text PDFThe chloroplast is the site of photosynthesis and many other essential plant metabolic processes, and chloroplast development is an integral part of plant growth and development. Mutants defective in chloroplast development can display various color phenotypes including the intriguing virescence phenotype, which shows yellow/white coloration at the leaf base and greening toward the leaf tip. Through large scale genetic screens, we identified a series of new virescent mutants including virescent3-1 (vir3-1), vir4-1, and vir5-1 in Arabidopsis thaliana.
View Article and Find Full Text PDFLeaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10).
View Article and Find Full Text PDFThe growth of higher plants is under complex regulation to ensure the elaboration of developmental programmes under a changing environment. To dissect these regulatory circuits, we carried out genetic screens for Arabidopsis abnormal shoot (abs) mutants with altered shoot development. Here, we report the isolation of two dominant mutants, abs3-1D and abs4-1D, through activation tagging.
View Article and Find Full Text PDFProper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D) and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype.
View Article and Find Full Text PDFKNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10.
View Article and Find Full Text PDFTranscriptional regulations are involved in many aspects of plant development and are mainly achieved through the actions of transcription factors (TF). To investigate the mechanisms of plant development, we carried out genetic screens for mutants with abnormal shoot development. Taking an activation tagging approach, we isolated a gain-of-function mutant abs2-1D (abnormal shoot 2-1D).
View Article and Find Full Text PDF