Objectives: The purpose is to apply a previously validated deep learning algorithm to a new thyroid nodule ultrasound image dataset and compare its performances with radiologists.
Methods: Prior study presented an algorithm which is able to detect thyroid nodules and then make malignancy classifications with two ultrasound images. A multi-task deep convolutional neural network was trained from 1278 nodules and originally tested with 99 separate nodules.
The radiologic appearance of locally advanced lung cancer may be linked to molecular changes of the disease during treatment, but characteristics of this phenomenon are poorly understood. Radiomics, liquid biopsy of cell-free DNA (cfDNA), and next-generation sequencing of circulating tumor DNA (ctDNA) encode tumor-specific radiogenomic expression patterns that can be probed to study this problem. Preliminary findings are reported from a radiogenomic analysis of CT imaging, cfDNA, and ctDNA in 24 patients (median age, 64 years; range, 49-74 years) with stage III lung cancer undergoing chemoradiation on a prospective pilot study (NCT00921739) between September 2009 and September 2014.
View Article and Find Full Text PDF