Purpose: This study aimed to investigate the subtypes of spiritual well-being among patients with early-stage lung cancer, examine the characteristics of each subtype, and determine the relationship between spiritual well-being and perceived social support as well as hope within these subtypes.
Methods: A sample of 418 patients with early-stage lung cancer from three hospitals in Hubei Province completed the general sociodemographic questionnaire, the Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being, the Perceived Social Support Scale, and the Herth Hope Index. Latent profile analysis (LPA) was used to identify the patterns of spiritual well-being in patients with early-stage lung cancer, and influencing factors of different patterns were identified by univariate analysis and multinomial logistic regression analysis.
Microbial communities are shaped by cell-cell interactions. Although archaea are often found in associations with other microorganisms, the mechanisms structuring these communities are poorly understood. Here, we report on the structure and function of haloarchaeal contractile injection systems (CISs).
View Article and Find Full Text PDFIxotrophy is a contact-dependent predatory strategy of filamentous bacteria in aquatic environments for which the molecular mechanism remains unknown. We show that predator-prey contact can be established by gliding motility or extracellular assemblages we call "grappling hooks." Cryo-electron microscopy identified the grappling hooks as heptamers of a type IX secretion system substrate.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) significantly hinder the immune response to tumor radiotherapy (RT) because of their massive accumulation in tumors after RT, resulting in immunosuppression and poor clinical prognosis. Herein, we developed an anti-PD-L1 antibody-conjugated iron oxide nanoprobe (FeO-αPD-L1) to target and induce ferroptosis in MDSCs, thereby alleviating RT resistance. Overexpression of PD-L1 in MDSCs following RT enables noninvasive magnetic resonance and positron emission tomography imaging using Zr-labeled nanoprobes to track the movement of MDSCs and their infiltration into the tumor.
View Article and Find Full Text PDFSexually reproducing eukaryotes employ a developmentally regulated cell division program-meiosis-to generate haploid gametes from diploid germ cells. To understand how gametes arise, we generated a proteomic census encompassing the entire meiotic program of budding yeast. We found that concerted waves of protein expression and phosphorylation modify nearly all cellular pathways to support meiotic entry, meiotic progression, and gamete morphogenesis.
View Article and Find Full Text PDFGamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
In recent years, the neural implicit surface has emerged as a powerful representation for multi-view surface reconstruction due to its simplicity and State-of-the-Art performance. However, reconstructing smooth and detailed surfaces in indoor scenes from multi-view images presents unique challenges. Indoor scenes typically contain large texture-less regions, making the photometric loss unreliable for optimizing the implicit surface.
View Article and Find Full Text PDFBackground: Chylothorax is a seldom encountered complication following lung surgery. However, due to the widespread practice of lung surgery, postoperative complications have inevitably arisen. Chylothorax significantly affects a patient's discharge and recovery.
View Article and Find Full Text PDFThe monitoring of organic compounds in aquatic matrices poses challenges due to its complexity and time-intensive nature. To address these challenges, we introduce a novel approach utilizing a dual-channel mono (D) and comprehensive two-dimensional (D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) system, integrated with a robotic pretreatment platform, for online monitoring of both volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in water matrices. Employing the robotic platform, we establish a suite of online liquid-liquid extraction (LLE) pretreatment processes for water samples, marking the first instance of such procedures.
View Article and Find Full Text PDFAim: To determine the teaching effects of a real-time three dimensional (3D) visualization system in the operating room for early-stage phacoemulsification training.
Methods: A total of 10 ophthalmology residents of the first-year postgraduate were included. All the residents were novices to cataract surgery.
Lightweight and low-cost one-dimensional carbon materials, especially biomass carbon fibers with multiple porous structures, have received wide attention in the field of electromagnetic wave absorption. In this paper, graphene-coated N-doped porous carbon nanofibers (PCNF) with excellent wave absorption properties were successfully synthesized via electrostatic spinning, electrostatic self-assembly, and high-temperature carbonization. The obtained results showed that the minimum reflection loss of the absorbing carbon fiber obtained under the carbonization condition of 800 °C is -51.
View Article and Find Full Text PDFBackground: Anaplastic Thyroid Carcinoma (ATC) is a rare and deadly malignant tumor in humans. It is prone to developing resistance to radiotherapy and chemotherapy. Molecular targeted therapy offers a novel way to treat ATC.
View Article and Find Full Text PDFNeutrophils play a crucial role in inflammatory immune responses, but their in vivo homing to inflammatory lesions remains unclear, hampering precise treatment options. In this study, we employed a biomineralization-inspired multimodal nanoagent to label neutrophils, enabling noninvasive monitoring of the dynamic process of inflammatory recruitment and guiding photothermal therapy in rheumatoid arthritis. Our nanoagents allowed visualization of neutrophil fate through magnetic resonance imaging, photoacoustic imaging, and fluorescence imaging in the first and second near-infrared windows.
View Article and Find Full Text PDFInt J Ophthalmol
November 2023
A corneal epithelial-stromal defect is recognized as a major contributor to corneal scarring. Given the rising prevalence of blindness caused by corneal scarring, increasing attention has been focused on corneal epithelial-stromal defects. Currently, the etiology and pathogenesis of these defects remain inadequately understood, necessitating further investigation through experimental research.
View Article and Find Full Text PDFTumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation.
View Article and Find Full Text PDFBackground: Female mosquitoes need a blood meal after mating for their eggs to develop, and this behavior leads to the spread of pathogens. Therefore, understanding the molecular regulation of reproduction in female mosquitoes is essential to control mosquito vector populations. In this study, we reported that microRNA-989 (miR-989), which targets 5-HTR1 (encoding secreted 5-hydroxytryptamine receptor1), is essential for mosquito reproduction.
View Article and Find Full Text PDFIn this study, a green zero-valent iron-loaded carbon composite (ZVI-SCG) was synthesized using coffee grounds and FeCl3 solution through two-steps method, and the synthesized ZVI-SCG was used in the activation of peroxydisulfate (PDS) to degrade Levofloxacin (LEX). Results revealed that ZVI-SCG exhibited a great potential for LEX removal by adsorption and catalytic degradation in the ZVI-SCG/PDS system, and 99% of LEX was removed in the ZVI-SCG/PDS system within 60 min. ZVI-SCG/PDS system showed a high reactivity toward LEX degradation under realistic environmental conditions.
View Article and Find Full Text PDFBackground: Patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer and primary resistance to trastuzumab have a poor clinical outcome and lack good evidence to inform clinical decision. This study investigated the efficacy and safety of pyrotinib plus capecitabine in this population.
Methods: This phase 2 trial was conducted at 16 sites in China.
In the electronic warfare environment, the performance of ground-based radar target search is seriously degraded due to the existence of smeared spectrum (SMSP) jamming. SMSP jamming is generated by the self-defense jammer on the platform, playing an important role in electronic warfare, making traditional radars based on linear frequency modulation (LFM) waveforms face great challenges in searching for targets. To solve this problem, an SMSP mainlobe jamming suppression method based on a frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar is proposed.
View Article and Find Full Text PDFBackground: Current mosquito-borne disease vector control strategies, largely based on chemical insecticides, are seriously threatened by increasing resistance worldwide. There is also growing concerned about the adverse effects of insecticides on nontarget organisms and the environment, therefore effective and ecologically friendly alternative approaches are urgently needed. Targeting critical steps of reproduction is considered a potential way to control mosquito populations.
View Article and Find Full Text PDFNew pollutant pharmaceutical and personal care products (PPCPs), especially antiviral drugs, have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment. Electro-Fenton technology is an effective method to remove PPCPs from water. Novel particle electrodes (MMT/rGO/FeO) were synthesized by depositing FeO nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional Electro-Fenton (3D-EF) system.
View Article and Find Full Text PDF