Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling.
View Article and Find Full Text PDF(+)-JQ1, a specific chemical inhibitor of bromodomain and extraterminal (BET) family protein 4 (BRD4), has been reported to inhibit smooth muscle cell (SMC) proliferation and mouse neointima formation via BRD4 regulation and modulate endothelial nitric oxide synthase (eNOS) activity. This study aimed to investigate the effects of (+)-JQ1 on smooth muscle contractility and the underlying mechanisms. Using wire myography, we discovered that (+)-JQ1 inhibited contractile responses in mouse aortas with or without functional endothelium, reducing myosin light chain 20 (LC20) phosphorylation and relying on extracellular Ca.
View Article and Find Full Text PDFThe recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases.
View Article and Find Full Text PDFTOP1MT encodes a mitochondrial topoisomerase that is important for mtDNA regulation and is involved in mitochondrial replication, transcription, and translation. Two variants predicted to affect TOP1MT function (V1 - R198C and V2 - V338L) were identified by exome sequencing of a newborn with hypertrophic cardiomyopathy. As no pathogenic TOP1MT variants had been confirmed previously, we characterized these variants for their ability to rescue several TOP1MT functions in KO cells.
View Article and Find Full Text PDFBackground: Low-density lipoprotein receptor (LDLR) is the primary pathway for removal of cholesterol from the circulation, pro-protein convertase subtilisin-like kexin type 9 (PCSK9) is a secreted protease that binds to and promotes degradation of the LDLR protein. The goal of this case-control study was to investigate the role of soluble LDLR (sLDLR) and PCSK9 in coronary artery disease (CAD) and investigate the relationship between these two indices and CAD.
Methods: In a sample of 144 Chinese patients recruited between January 2018 and August 2018, 81 cases with mild and severe stenosis characterized by coronary angiograph (CAG) and 63 healthy controls were selected using the propensity score matching (PSM) based on demographics and medical history.
Aims: The estrogen-inducible protein Heat Shock Protein 27 (HSP27) as well as anti-HSP27 antibodies are elevated in healthy subjects compared to cardiovascular disease patients. Vaccination of ApoE mice with recombinant HSP25 (rHSP25, the murine ortholog), boosts anti- HSP25 levels and attenuates atherogenesis. As estrogens promote HSP27 synthesis, cellular release and blood levels, we hypothesize that menopause will result in loss of HSP27 atheroprotection.
View Article and Find Full Text PDFBlood levels of heat shock protein (HSP27) and natural IgG auto-antibodies to HSP27 (AAbs) are higher in healthy controls compared to cardiovascular disease patients. Vaccination of mice with recombinant HSP25 (rHSP25, murine ortholog of human rHSP27) increased AAb levels, attenuated atherogenesis and reduced plaque inflammation and cholesterol content. We sought to determine if the HSP27 immune complex (IC) altered MΦ inflammation signaling (Toll Like Receptor 4; TLR4), and scavenger receptors involved in cholesterol uptake (SR-AI, CD-36).
View Article and Find Full Text PDFMyosin regulatory light chain (LC20) phosphorylation plays an important role in vascular smooth muscle contraction and cell migration. Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates LC20 (its only known substrate) exclusively at S19. Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in the regulation of LC20 phosphorylation via direct phosphorylation of LC20 at T18 and S19 and indirectly via phosphorylation of MYPT1 (the myosin targeting subunit of myosin light chain phosphatase, MLCP) and Par-4 (prostate-apoptosis response-4).
View Article and Find Full Text PDFPreviously, we reported that elevated serum levels of heat shock protein 27 (HSP27) are predictive of a lower risk of having a heart attack, stroke, or death from cardiovascular disease. Moreover, augmenting HSP27 (or the murine ortholog, HSP25) attenuated experimental atherogenesis, reduced inflammation, and lowered cholesterol levels. Recently, we noted that HSP27 activates NF-κB via TLR-4, resulting in attenuation of plaque inflammation; however, the precise anti-atherosclerosis mechanisms mediated by extracellular HSP27 are incompletely understood.
View Article and Find Full Text PDFThe fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse.
View Article and Find Full Text PDFThis study was designed to investigate the changes of urinary microvesicle-bound uromodulin and total urinary uromodulin levels in human urine and the correlations with the severity of diabetic kidney disease (DKD). 31 healthy subjects without diabetes and 100 patients with type 2 diabetes mellitus (T2DM) were included in this study. The patients with T2DM were divided into three groups based on the urinary albumin/creatinine ratio (UACR): normoalbuminuria group (DM, = 46); microalbuminuria group (DN1, = 32); and macroalbuminuria group (DN2, = 22).
View Article and Find Full Text PDFThe selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP).
View Article and Find Full Text PDFInhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) represents a therapeutic target for treating hyperglycemia in type 2 diabetes. Here, we investigate the effects of 11β-HSD1 on the innate immune response of adipocytes to produce proinflammatory cytokines. The 11β-HSD1 inhibitor emodin, or 11β-HSD1-targeted small interfering RNA, dose dependently suppressed IL-6, IL-1β, and TNF-α expression in lipopolysaccharide-treated 3T3-L1 adipocytes.
View Article and Find Full Text PDFRho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC).
View Article and Find Full Text PDFAs pro-inflammatory cytokines and chemokines contribute to the malignancy of many types of human cancer, we examined the anti-inflammatory effect of bisbibenzyls, a diverse bioactive group of naturally occurring compounds. Marchantin M (Mar M) was identified through a screening process of these compounds as a potent anti-inflammatory agent based on its capacity to inhibit LPS-induced IL6, IL1β and CCL2 expression in HUVECs and PBMCs without affecting cell proliferation. Since Mar M has been found to exhibit anticancer activity, we observed that Mar M treatment also resulted in decreases in the expressions of IL6, IL1β and TNFα in metastatic prostate cancer (PCa) cells.
View Article and Find Full Text PDFBackground: Changes in circulatory aminopeptidases [dipeptidyl-peptidase-IV (DPP-IV), Prolyl-oligopeptidase (POP) and Leucine aminopeptidase (LAP)] activities have been found to be associated with psychiatric illnesses and inflammatory diseases.
Methods: The discriminatory indices of aminopeptidases activities were assessed by enzymatic assays in plasma samples from 240 unipolar depression (UD) patients and 264 matched controls. In addition the relationship between soluble and cellular DPP-IV activity was determined in plasma and blood cells from healthy subjects.
microRNAs (miRNAs) are small noncoding RNAs that regulate genes and contribute to many kinds of human diseases, including cancer. Two miRNAs, miR-511 and miR-1297, were investigated for a possible role in adenocarcinoma based on predicted binding sites for the TRIB2 oncogene by microRNA analysis software, and the pcDNA-GFP-TRIB2-3'UTR vector was constructed to investigate the interaction between TRIB2 and miR-511/1297 in the adenocarcinoma cell line A549. Green fluorescent protein (GFP) expression was estimated by fluorescence microscopy and flow cytometry after A549 cells were co-transfected with miR-511 (or miR-1297) and pcDNA-GFP-TRIB2-3'UTR vector.
View Article and Find Full Text PDFThe present study was designed to identify the changes in microvesicle-dipeptidyl peptidase-IV (DPP IV) levels in human urine and serum, and to determine whether there were correlations with the severity of diabetic kidney disease (DKD). A total of 127 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according to the urinary albumin/ creatinine ratio (UACR): microalbuminuria group (n = 50); macroalbuminuria group (n = 34) and normoalbuminuria group (n = 43), and 34 age- and sex-matched non-diabetic healthy subjects were selected as controls. Microvesicle-bound DPP IV and free urinary DPP IV were separated by a filtra-centrifugation method.
View Article and Find Full Text PDFInsulin resistance triggers the developments of diabetes mellitus and atherosclerosis. Tribbles homolog 3 (TRIB3) is involved in insulin resistance. We aimed to investigate whether TRIB3 is implicated in diabetic atherosclerosis.
View Article and Find Full Text PDFThe fundamental mechanisms that underlie platelet activation in atherothrombosis are still obscure. Oxidative stress is involved in central features of atherosclerosis. Platelet-derived microvesicles (PMVs) could be important mediators between oxidative stress and platelet activation.
View Article and Find Full Text PDFTo characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection.
View Article and Find Full Text PDFBackground: Microvesicles are involved in different pathological processes such as inflammation, coagulation and tumor progression. We intended to establish an immunoaffinity capture method for detecting microvesicles and bioactive effectors carried on them using a specific homemade monoclonal antibody AD-1. By this method we investigated the association of inflammation with platelet activation in patients with nonvalvular atrial fibrillation (NVAF).
View Article and Find Full Text PDFThe objective of this study was to investigate the gene expression signature of monocyte/macrophages and the pleiotropic effects of atorvastatin on monocytes in atherosclerotic patients. Forty patients with coronary heart diseases were randomly assigned to double-blind therapy with either 20 or 80 mg per day of atorvastatin. Follow-up visits occurred at weeks 6 and 12, including complete chemistry and lipid analyses and quantification of 14 target genes in monocytes.
View Article and Find Full Text PDF