After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2.
View Article and Find Full Text PDFPathological ocular angiogenesis is a significant cause of irreversible vision loss and blindness worldwide. Currently, most studies have focused on the angiogenesis factors in ocular vascular diseases, and very few endogenous anti-angiogenic compounds have been found. Moreover, although inflammation is closely related to the predominant processes involved in angiogenesis, the mechanisms by which inflammation regulates pathological ocular angiogenesis remain obscure.
View Article and Find Full Text PDFDiabetic foot ulcers (DFUs) are a serious vascular disease. Currently, no effective methods are available for treating DFUs. Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid levels to promote atherosclerosis.
View Article and Find Full Text PDFAcute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS.
View Article and Find Full Text PDFSmall-diameter vascular grafts (SDVGs) are severely lacking in clinical settings. Therefore, our study investigates a new source of biological vessels-bovine and porcine decellularized intercostal arteries (DIAs)-as potential SDVGs. We utilized a combination of SDS and Triton X-100 to perfuse the DIAs, establishing two different time protocols.
View Article and Find Full Text PDFOne of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long noncoding RNAs (lncRNAs), could provide new, more targeted therapeutic approaches to inhibit cardiac hypertrophy.
View Article and Find Full Text PDFVascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied.
View Article and Find Full Text PDFFerroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis.
View Article and Find Full Text PDFBackground And Purpose: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription.
View Article and Find Full Text PDFSignal Transduct Target Ther
August 2023
Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms.
View Article and Find Full Text PDFSignal Transduct Target Ther
August 2023
Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear.
View Article and Find Full Text PDFBackground: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive.
View Article and Find Full Text PDFAims: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown.
View Article and Find Full Text PDFVascular calcification is an important risk factor for cardiovascular events, accompanied by DNA damage during the process. The sirtuin 6 (SIRT6) has been reported to alleviate atherosclerosis, which is related to the reduction of DNA damage. However, whether smooth muscle cell SIRT6 mediates vascular calcification involving DNA damage remains unclear.
View Article and Find Full Text PDFVascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD). Cell death such as apoptosis plays a critical role in vascular calcification. Ferroptosis is a type of iron-catalyzed and regulated cell death resulting from excessive iron-dependent reactive oxygen species and lipid peroxidation.
View Article and Find Full Text PDFVascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, an effective therapy for vascular calcification is still lacking. The ketone body β-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects.
View Article and Find Full Text PDFThe aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery.
View Article and Find Full Text PDFIn addition to the well-known functions, plasma HDL also plays an important role in postsurgery periods. In this chapter, we summarized the changes of HDL after surgery like bariatric surgery and cardiac surgery. Not only the amount of HDL changed, the HDL components or functions have also been altered after various surgeries.
View Article and Find Full Text PDF