The electronic structures and optical characteristics of yttrium (Y)-doped ZnO monolayers (MLs) with vacancy (zinc vacancy, oxygen vacancy) were investigated by the first-principles density functional theory. Calculations were performed with the GGA+U (generalized gradient approximation plus U) approach, which can accurately estimate the energy of strong correlation semiconductors. The results show that the formation energy values of Y-doped ZnO MLs with zinc or oxygen vacancy (V, V) are positive, implying that the systems are unstable.
View Article and Find Full Text PDFThe structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites.
View Article and Find Full Text PDFWith high percentage of washing water, swine wastewater is characterized by large volume and low concentration of total solids. Thus, in treating swine wastewater, it is relatively difficult to heat digesters, resulting in low methane production at low ambient temperatures (ATs). To increase methane production from swine wastewater, this study proposed a novel "two-step heating (TSH)" mode with the same energy consumption as a one-step process for anaerobic digestion.
View Article and Find Full Text PDF