Background: Although ultrasonography (US) has been widely used in the diagnosis of human diseases to monitor the progress of cystic echinococcosis (CE) control, the screening method for hepatic CE in sheep flocks requires adjustment. In this study, we used a US scanner to screen sheep flocks and evaluated the efficacy of dosing dogs once a year with praziquantel for 7 years from 2014 to 2021.
Methods: All sheep in the three flocks were screened using an ultrasound scanner in 2014 and compared with the prevalence of infection in 2021 in Bayinbuluke, Xinjiang, China.
Cystic echinococcosis (CE) is a grievous zoonotic parasitic disease. Currently, the traditional technology of screening CE is laborious and expensive, developing an innovative technology is urgent. In this study, we combined serum fluorescence spectroscopy with machine learning algorithms to develop an innovative screening technique to diagnose CE in sheep.
View Article and Find Full Text PDFWhile cholecystitis is a critical public health problem, the conventional diagnostic methods for its detection are time consuming, expensive and insufficiently sensitive. This study examined the possibility of using serum fluorescence spectroscopy and machine learning for the rapid and accurate identification of patients with cholecystitis. Significant differences were observed between the fluorescence spectral intensities of the serum of cholecystitis patients (n = 74) serum and those of healthy subjects (n = 71) at 455, 480, 485, 515, 625 and 690 nm.
View Article and Find Full Text PDFBrucellosis in sheep is an infectious disease caused by Brucella melitensis in sheep. The current conventional serological methods for screening Brucella-infected sheep have the disadvantage of time consuming and low accuracy, so a simple, rapid and highly accurate screening method is needed. The aim of this study was to evaluate the feasibility of diagnosing Brucella-infected sheep by serum samples based on the Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFGallbladder cancer (GBC) is a rare but frequently fatal biliary tract malignancy that is typically discovered when it is already advanced. In this study, we investigated a novel technique for the quick and non-invasive diagnosis of GBC based on serum surface-enhanced Raman spectroscopy (SERS). SERS spectra of serum from 41 patients with GBC and 72 normal subjects were recorded.
View Article and Find Full Text PDFGallbladder cancer (GBC) is the most common malignant tumour of the biliary tract. GBC is difficult to diagnose and treat at an early stage because of the lack of effective serum markers and typical symptoms, resulting in low survival rates. This study aimed to investigate the applicability of dried serum Fourier-transform infrared (FTIR) spectroscopy combined with machine learning algorithms to correctly differentiate patients with GBC from patients with gallbladder disease (GBD), cholangiocarcinoma (CCA), hepatocellular carcinoma (HCC) and healthy individuals.
View Article and Find Full Text PDFIn this study, we looked at the viability of utilizing serum to differentiate between gallbladder (GB) stones and GB polyps using Surface-enhanced Raman spectroscopy (SERS), which has the potential to be a quick and accurate means of diagnosing benign GB diseases. Rapid and label-free SERS was used to conduct the tests on 148 serum samples, which included those from 51 patients with GB stones, 25 patients with GB polyps and 72 healthy persons. We used an Ag colloid as a Raman spectrum enhancement substrate.
View Article and Find Full Text PDFIn this paper, we investigated the possibility of using urine fluorescence spectroscopy and machine learning method to identify hepatocellular carcinoma (HCC) and liver cirrhosis from healthy people. Urine fluorescence spectra of HCC (n = 62), liver cirrhosis (n = 65) and normal people (n = 60) were recorded at 405 nm excitation using a Fluorescent scan multimode reader. The normalized fluorescence spectra revealed endogenous metabolites differences associated with the disease, mainly the abnormal metabolism of porphyrin derivatives and bilirubin in the urine of patients with HCC and liver cirrhosis compared to normal people.
View Article and Find Full Text PDFIn this paper, we investigated the feasibility of using urine for surface-enhanced Raman spectroscopy (SERS) for the rapid screening of patients with liver cirrhosis and hepatocellular carcinoma (HCC). The SERS spectra were recorded from the urine of 49 liver cirrhosis, 55 HCC, and 50 healthy volunteers using a Raman spectrometer. The normalized mean Raman spectra showed the difference of specific biomolecules associated with the illnesses, and the metabolism of specific nucleic acids and amino acids is abnormal in patients with liver cirrhosis and HCC.
View Article and Find Full Text PDF