Publications by authors named "Jingru Qiu"

Photodynamic therapy is an efficient approach to promote cytotoxic T lymphocyte tumor infiltration to convert immunologically cold tumors into hot tumors through the induction of immunogenic cell death . However, tumors usually overexpress immune checkpoints such as PD-L1 to suppress T lymphocyte antitumor activity and evade immune surveillance. Therefore, the design of efficient photosensitizers to overcome checkpoint-mediated immune evasion is highly necessary.

View Article and Find Full Text PDF

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC).

View Article and Find Full Text PDF

Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface.

View Article and Find Full Text PDF

Photodynamic therapy is a promising cancer therapeutic method that can damage DNA via photoinduced reactive oxygen species production. However, tumor cells can initiate DNA repair pathways to resist oxidative damage. In this study, a nuclear-targeted photosensitizer PARP-PS with a poly (ADP-ribose) polymerase 1 (PARP1) inhibitory effect is developed based on the reported PARP1 inhibitor, rucaparib.

View Article and Find Full Text PDF

Recent emerging evidence reveals that cGAS-STING-mediated Type I interferon (IFN) signaling axis takes part in the microglial-associated neuroinflammation. However, the potential role of pharmacological inhibition of STING on neuroinflammation and dopaminergic neurodegeneration remains unknown. In the present study, we investigated whether pharmacological inhibition of STING attenuates neuroinflammation and neurodegeneration in experimental models of Parkinson's disease.

View Article and Find Full Text PDF

In this work, we described a photocatalytic approach, termed ligand-directed photodegradation of interacting proteins (LDPIP), for efficient protein-protein heterodimer degradation. This LDPIP approach utilizes a combination of a photosensitizing protein ligand and appropriate light and molecular oxygen to induce oxidative damage to the ligand-binding protein as well as its interacting protein partner. As a showcase study, a photosensitizing HER2 ligand was rationally designed based on the FDA-approved HER2 inhibitor lapatinib to efficiently degrade HER2 together with its interacting protein partner HER3, which is thought to induce HER2-targeted therapy resistance and difficult to target by small molecules.

View Article and Find Full Text PDF

Development of safe and effective photosensitizers is important for enhancing the efficacy of photodynamic cancer therapy. Phenalenone is a type II photosensitizer with a high singlet oxygen quantum yield; however, its short UV absorption wavelength hinders its application in cancer imaging and in vivo photodynamic therapy. In this study, we report a new redshift phenalenone derivative, 6-amino-5-iodo-1H-phenalen-1-one (SDU Red [SR]), as a lysosome-targeting photosensitizer for triple-negative breast cancer therapy.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation and mitochondrial dysfunction play critical role in the pathogenic process of Parkinson's disease (PD). Mitophagy plays central role in mitochondrial quality control. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia-mediated neurodegeneration and neuroinflammation.

View Article and Find Full Text PDF

Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). Therapeutic strategies targeting mitochondrial dysfunction hold considerable promise for the treatment of PD. Recent reports have highlighted the protective role of urolithin A (UA), a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries and walnuts, in several neurological disorders including Alzheimer's disease and ischemic stroke.

View Article and Find Full Text PDF

Microglia-mediated inflammation plays an important role in the pathogenesis of several neurodegenerative diseases including Parkinson's disease (PD). Recently, autophagy has been linked to the regulation of the inflammatory response. However, the potential role of microglial autophagy in the context of PD pathology has not been characterized.

View Article and Find Full Text PDF

This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl₄)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl₄ exposure. At 24 h, curcumin-attenuated CCl₄ induced elevated serum transaminase activities and histopathological damage in the mouse's liver.

View Article and Find Full Text PDF