Cerenkov radiation-induced photodynamic therapy (CR-induced PDT) has shown the potential to overcome the light penetration limitation in conventional PDT. In addition, the tumor-associated antigens (TAAs) produced by PDT can initiate an antitumor immune process but only show a limited immunotherapeutic effect without the use of immunotherapeutic agents. Herein, a CR-induced PDT hydrogel (R837/Zr-HG-PpIX) has been developed by in situ formation of a hyaluronic acid (HA)-based hydrogel integrated with internal light source Zr, photosensitizer protoporphyrin IX (PpIX), and immune adjuvant imiquimod (R837).
View Article and Find Full Text PDFHigh mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells.
View Article and Find Full Text PDFNAD-dependent deacetylase Sirt2 is involved in mammalian metabolic activities, matching energy demand with energy production and expenditure, and is relevant to a variety of metabolic diseases. Here, we constructed Sirt2 knockout and adeno-associated virus overexpression mice and found that deletion of hepatic Sirt2 accelerated primary obesity and insulin resistance in mice with concomitant hepatic metabolic dysfunction. However, the key targets of Sirt2 are unknown.
View Article and Find Full Text PDFAn in-depth understanding of structure-activity relationship between the phase constitution and solar-to-hydrogen (STH) conversion efficiency is conducive to guiding the optimization route of targeted photocatalyst candidates, further establishing advanced photocatalytic systems. Herein, based on the concept of phase engineering, we encompassed the crystalline phase of CdS and achieved precise regulation of phase proportion as well as phase boundary width in the phase junction for the first time. The above cooperative effect not only modifies energy band distribution for sufficient redox potentials, but also guarantees the reverse migration orientation of photogenerated carriers in phase junction, thereby endowing photocarriers with a prolonged lifetime.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease. Nusinersen sodium (NS) is the world's first antisense oligonucleotide (ASO) drug for SMA precise targeted therapy. However, the limited half-life of oligonucleotides and their tendency to accumulate in hepatic and renal tissues presented significant challenges for clinical investigation and therapeutic drug monitoring.
View Article and Find Full Text PDFCold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins.
View Article and Find Full Text PDFHypothermia is an essential environmental factor in gastrointestinal diseases, but the main molecular mechanisms of pathogenesis remain unclear. The current study sought to better understand how chronic cold stress affects gut damage and its underlying mechanisms. In this work, to establish chronic cold stress (CS)-induced intestinal injury model, mice were subjected to continuous cold exposure (4 °C) for 3 h per day for 3 weeks.
View Article and Find Full Text PDFCold is a common stressor that threatens colonic health by affecting internal homeostasis. From the literature, Silent information regulator 2 (SIRT2) may have important roles during cold stress, but this conjecture requires investigation. To address this knowledge gap, we investigated the effects of SIRT2 on colonic injury in chronically cold-exposure mice.
View Article and Find Full Text PDFCerenkov radiation induced photodynamic therapy (CR-PDT) can tackle the tissue penetration limitation of traditional PDT. However, co-delivery of radionuclides and photosensitizer may cause continuous phototoxicity in normal tissues during the circulation. 5-aminolevulinic acid (ALA) which can intracellularly transform into photosensitive protoporphyrin IX (PpIX) is a cancer-selective photosensitizer with negligible side effect.
View Article and Find Full Text PDFUnlabelled: Prolonged cold exposure causes body stress and damages health. The intestinal environment is complex and variable, and direct contact with the external environment can easily cause stress, damage and even lead to diseases such as diarrhea.
Aims: This study aimed to reveal the role of cold exposure on ileum damage and the role of SIRT2 in this process.
ATP, a small molecule with high intracellular concentration (mM level), provides a fuel to power signal amplification, which is meaningful for biosensing. However, traditional ATP-powered amplification is based on ATP/aptamer recognition, which is susceptible to the complex biological microenvironment (e.g.
View Article and Find Full Text PDFOverexpression of fibroblast activation protein (FAP) in cancer-associated fibroblasts in a wide variety of tumors enables a highly selective targeting strategy using FAP inhibitors (FAPIs). Quinoline-based FAPIs labeled with radionuclides have been widely developed for tumor-targeted nuclear medicine imaging. However, the short retention time of FAPIs at the tumor site limits their application in radionuclide therapy.
View Article and Find Full Text PDFZhongguo Ying Yong Sheng Li Xue Za Zhi
September 2022
To study the mechanisms of cold exposure mediated ileum mechanical barrier injury in mice. Twenty mice were randomly divided into the control and cold exposure groups. Both the control and cold exposure groups were placed in the climate room with (24±2)℃ and 40% humidity.
View Article and Find Full Text PDFCold is a factor affecting health in humans and animals. The liver, a major metabolic center, is highly susceptible to ambient air temperature. Recent studies have shown that endoplasmic reticulum (ER) stress is associated with the liver, and regulates the occurrence and development of liver injury and autophagy.
View Article and Find Full Text PDFControlling the morphology, composition, and crystalline phase of mesoporous nonnoble metal catalysts is essential for improving their performance. Herein, well-defined P- and B-codoped NiFe alloy mesoporous nanospheres (NiFeB-P MNs) with an adjustable Ni/Fe ratio and large mesopores (11 nm) are synthesized via soft-template-based chemical reduction and a subsequent phosphine-vapor-based phosphidation process. Earth-abundant NiFe-based materials are considered promising electrocatalysts for the oxygen evolution reaction (OER) because of their low cost and high intrinsic catalytic activity.
View Article and Find Full Text PDFThe negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis.
View Article and Find Full Text PDFAmbient air temperature is a key factor affecting human health. Long-term exposure to a cold environment can cause various diseases, while the impact on the intestine, the organ which has the largest contact area with the external environment, cannot be ignored. In this study, we investigated the effect of chronic cold exposure on the colon and its preliminary mechanism of action.
View Article and Find Full Text PDFMelatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed.
View Article and Find Full Text PDFPigs are susceptible to low temperature conditions, and cold stress causes metabolic changes in the body to increase heat production as an adaption to adverse environments. To characterize and validate different metabolites in piglet livers at different cold exposure times, sixteen 30-day-old male weaned piglets with similar weights were randomly divided into four groups: the normal temperature group (24 ± 2°C, NT) and cold exposure (4 ± 2°C) 2-h group (CS2), 6-h group (CS6), and 12-h group (CS12). At the end of the experiment, the liver samples were analyzed using systemic non-targeted metabolomics.
View Article and Find Full Text PDFMelatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants.
View Article and Find Full Text PDFThe application of traditional electrode materials for high-performance capacitive deionization (CDI) has been persistently limited by their low charge-storage capacities, excessive co-ion expulsion and slow salt removal rates. Here we report a bottom-up approach to the preparation of a two-dimensional (2D) Ti C T MXene-polydopamine heterostructure having ordered in-plane mesochannels (denoted as mPDA/MXene). Interfacial self-assembly of mesoporous polydopamine (mPDA) monolayers on MXene nanosheets leads to the mPDA/MXene heterostructure, which exhibits several unique features: (1) MXene undergoes reversible ion intercalation/deintercalation and possesses high conductivity; (2) mPDA layers establish redox capacitive characteristics and Na selectivity, and also help to prevent self-stacking and oxidation of MXene; (3) in-plane mesochannels enable the smooth transport of ions at the internal spaces of this stacked 2D material.
View Article and Find Full Text PDFAlthough artemisinin (ART) has shown initial promise in cancer therapy, its therapeutic efficacy is limited by its low tumor inhibitory efficacy and unfavorable distribution. Considering the important role of heme in the specific parasite-killing effect of ART, we designed a liposomal nanostructure self-assembled from hemin-lipid (Hemesome) to co-deliver ART and hemin for cancer therapy. The synergistic chemotherapeutic and immunotherapeutic effects of hemin and ART were demonstrated both in vitro and in vivo.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2021
Cassava is a food crop and an important energy crop worldwide. However, its yield and quality are easily affected by low K stress, and the molecular mechanism of potassium channel is unknown in cassava. Herein, we revealed that calcineurin B-like 1/9 (MeCBL1/9)-CBL-interacting protein kinase 23 (MeCIPK23)-K TRANSPORTER1 (MeAKT1) complex plays an important role in low potassium response in cassava.
View Article and Find Full Text PDFExploring a new-family of carbon-based desalinators to optimize their performances beyond the current commercial benchmark is of significance for the development of practically useful capacitive deionization (CDI) materials. Here, we have fabricated a hierarchically porous N,P-doped carbon-graphene 2D heterostructure (denoted NPC/rGO) by using metal-organic framework (MOF)-nanoparticle-driven assembly on graphene oxide (GO) nanosheets followed by stepwise pyrolysis and phosphorization procedures. The resulting NPC/rGO-based CDI desalinator exhibits ultrahigh deionization performance with a salt adsorption capacity of 39.
View Article and Find Full Text PDF