Publications by authors named "Jingrong Xiong"

Background: As the primary organ of metabolism and detoxification, the liver may contribute to the pathogenesis of lung cancer. We aimed to illuminate the intricate link between liver function biomarkers and lung cancer risk, as well as delineate the role of smoking behavior within this association.

Methods: We investigated the associations of seven liver function biomarkers levels (alkaline phosphatase [ALP], alanine transaminase [ALT], total bilirubin [TBIL], albumin [ALB], gamma-glutamyltransferase [GGT], aspartate transaminase [AST], and total protein [TP]) with lung cancer risk across the UK Biobank (N = 337 499) through restricted cubic splines and Cox proportional hazards models.

View Article and Find Full Text PDF

Aims: This study aimed to investigate the association between dietary protein intake and mortality among patients with diabetic kidney disease.

Methods: The research encompassed a total of 2901 participants diagnosed with diabetic kidney disease, drawn from the National Health and Nutrition Examination Survey (NHANES). To determine outcomes related to all-cause and cardiovascular mortality, connections were established with the National Death Index up until December 31, 2019.

View Article and Find Full Text PDF

Nondestructive separation/enrichment and reliable detection of extremely rare circulating tumor cells (CTCs) in peripheral blood are of considerable importance in tumor precision diagnosis and treatment, yet this remains a big challenge. Herein, a novel strategy for nondestructive separation/enrichment and ultra-sensitive surface-enhanced Raman scattering (SERS)-based enumeration of CTCs is proposed via aptamer recognition and rolling circle amplification (RCA). In this work the magnetic beads modified with "Aptamer (Apt)-Primer" (AP) probes were utilized to specifically capture CTCs, and then after magnetic separation/enrichment, the RCA-powered SERS counting and benzonase nuclease cleavage-assisted nondestructive release of CTCs were realized, respectively.

View Article and Find Full Text PDF

The molecular diagnosis of disease by high-sensitively and specifically detecting extremely trace amounts of nucleic acid biomarkers in biological samples is still a great challenge, and the powerful sensing strategy has become an urgent need for basic researches and clinical applications. Herein, a novel one-pot cascade signal amplification strategy (Cas13a-bHCR) integrating CRISPR/Cas13a system (Cas13a) and branched hybridization chain reaction (bHCR) was proposed for ultra-highly sensitive and specific SERS assay of disease-related nucleic acids on SERS-active silver nanorods sensing chips. The Cas13a-bHCR based SERS assay of gastric cancer-related miRNA-106a (miR-106a) can be achieved within 60 min and output significantly enhanced SERS signal due to the multiple signal amplification, which possesses a good linear calibration curve from 10 aM to 1 nM with the limit of detection (LOD) low to 8.

View Article and Find Full Text PDF

The visualization of protein dimerization on live cells is an urgent need and of vital importance for facile monitoring the signal transduction during intercellular communication. Herein, a highly sensitive and specific SERS strategy for simultaneously imaging dual homodimerizations of membrane proteins on single live cells was proposed by networking of AuNPs-based dual-recognition probes (dual-RPs) and SERS tags via proximity ligation-assisted catalytic hairpin assembly (CHA). The dual-RPs were prepared by comodifying hairpin-structured ssDNAs H1-Met and H1-TβRII on 50 nm AuNPs and two SERS tags for membrane proteins Met and TβRII were prepared respectively by labeling their corresponding Raman molecules and hairpin-structured single-stranded DNAs H2-Met or H2-TβRII on 15 nm AuNPs.

View Article and Find Full Text PDF

Development of theranostic nanosystems integrating cascaded surface-enhanced Raman scattering (SERS) imaging and gene silencing therapy for accurate cancer diagnosis and treatment is still a big challenge and rarely reported. Herein, a novel Au nanoparticles (AuNPs)-based theranostic nanosystem containing AuNP-Ys and AuNP-Ds for highly sensitive and specific cancer diagnosis and treatment was proposed for cascaded SERS imaging of intracellular cancer-related miR-106a and miR-106a-triggered DNAzyme-based dual gene-silencing therapy of cancer cells. The AuNP-Ys were prepared by modifying the AuNPs with specially designed Y-motifs, and the AuNP-Ds were obtained by colabeling Raman molecules and dsDNA linkers on AuNPs.

View Article and Find Full Text PDF

Identification and detection of extreme rare circulating tumor cells (CTCs) in peripheral blood can precisely monitor cancer recurrence and metastasis, however, how to ultra-sensitively and reliably detect CTCs is a big challenge. In this work, a ratiometric surface-enhanced Raman spectroscopy (SERS)-based strategy for ultra-sensitively and nondestructively detecting CTCs was proposed via CTCs-triggered DNA walker-assisted assembly of plasmonic nanostructure networks consisting of Walker probes and SERS tags. The Walker probes were prepared by modifying FeO@SiO@Au nanoparticles (GMNPs) with ROX-labeled EpCAM aptamer-blocked Zn-specific DNAzyme and hairpin-structured single-stranded DNAs H1, and the SERS tags were constructed by co-labelling hairpin-structured single-stranded DNAs H2 and Raman molecules (DTNB) on Au NPs.

View Article and Find Full Text PDF

The development of rapid and ultra-sensitive detection technology of SARS-CoV-2 RNA for shortening the diagnostic window and achieving early detection of virus infections is a huge challenge to the efficient prevention and control of COVID-19. Herein, a novel ultra-sensitive surface-enhanced Raman spectroscopy (SERS) sensor powered by non-enzymatic signal amplification is proposed for rapid and reliable assay of SARS-CoV-2 RNA based on SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification strategy. The SERS sensing was carried out by a one-pot hybridization of the lock probes (LPs), hairpin DNAs and SERS tags with SARS-CoV-2 RNA samples on an arrayed SERS sensing chip to achieve the recognition of SARS-CoV-2 RNA, the execution of nuclease-free unlocking-mediated target recycling signal amplification, and the combination of SERS tags to generate SERS signal.

View Article and Find Full Text PDF

Visualization of cell apoptosis can effectively assist early disease diagnosis, precisely reveal pathogenic mechanisms and continuously evaluate curative effect. However, monitoring partial stage of the apoptosis can not accurately or even mistakenly illustrate the apoptotic pathways. Herein, a novel tetrahedral DNA probe (TDNA-WCP) consists of a multi-armed tetrahedral DNA and three special sensing arms for simultaneously fluorescence imaging cytochrome c (Cyt c) and telomerase is proposed to visualize the early and late stages (i.

View Article and Find Full Text PDF