Int J Biol Macromol
September 2024
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing.
View Article and Find Full Text PDFIn this study, porous hemostatic sponges (CGS1, CGS2 and CGS3) with proper absorption (38-43×) and air permeability (2214 g/m·day) were prepared from l-glutamine-modified chitosan (CG), tannic acid-modified gelatin (GTA), and oxidized dextran (ODEX) by Schiff base crosslinking reaction. Among them, CGS2 was proved to have high porosity (88.98 %), durable water retention (>6 h), strong antibacterial activity, proper mechanical quality, and suitable tissue adhesion.
View Article and Find Full Text PDFSkin wound dressing materials, which can accelerate wound healing and have the synthetic advantages of simplicity, environmental safety, and resource abundance, are becoming a hot topic of research now. Following such a research trend, we prepared novel decanoic acid functionalized chitosan (CSDA) with good solubility by acylation via a facile one-step method. FTIR, H NMR, and UV-Vis results demonstrated that alkyl chains were successfully grafted onto C2 positions of chitosan (CS) skeleton through acylation.
View Article and Find Full Text PDFThis work aims to prepare 3,6-O-N-acetylethylenediamine modified chitosan (AEDMCS) and evaluate its potential use as an antimicrobial wound dressing material. UV, FTIR, and H NMR results demonstrated N-acetylethylenediamine groups were successfully grafted to C3OH and C6OH on polysaccharide skeletons. TGA, XRD, and solubility tests indicated that as compared with chitosan, AEDMCS had diminished thermostability, decreased crystallinity, and greatly improved solubility.
View Article and Find Full Text PDFThis study aims to develop new antibacterial hydrogel wound dressings composed of poly(aminoethyl) modified chitosan (PAEMCS). FTIR, H NMR, and elemental analysis demonstrated that PAEMCS was successfully synthesized via grafting poly(aminoethyl) groups onto hydroxyl groups on chitin first, and removing acetyl groups from the grafted polymer afterward. XRD and TGA implied its well-defined crystallinity and thermostability.
View Article and Find Full Text PDFThis work aims to synthesize a novel itaconic acid (IA) grafted carboxymethyl chitosan (PICMCS), and further fabricate its nanoparticles for potential biomedical applications. First, PICMCS was prepared via free-radical polymerization of IA monomer, in the presence of ammonium persulfate as an initiator and nitrogen as a protector. Its chemical structure was confirmed by FTIR and H NMR.
View Article and Find Full Text PDFA novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFA new microbe, Serratia marcescens W5 was successfully isolated. Its feasibility in purification of excessively nitrogen-containing wastewater was evaluated using inorganic nitrogen media. Single factor tests showed that W5 exhibited high ammonium removal rates (above 80%) under different culture conditions (pH 7-10, C/N ratios of 6-20, 15-35°C, 0-2.
View Article and Find Full Text PDFInjectable thermosensitive hydrogels have widely been studied as drug delivery systems for their minimally invasive administration and localized drug release. However, burst drug release limits clinical applications of such hydrogels. A double-component injectable formulation (microspheres-loaded hydrogel, CMs-CS-HG) was thus fabricated to eliminate the limitation.
View Article and Find Full Text PDFChitosan-N-2-hydroxypropyl trimethyl ammonium chloride (QTS) was prepared by reaction of chitosan (CS) and glycidyl trimethylammonium chloride. Later, O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride (AQTS) was synthesized by reaction of QTS with acetic acid in the presence of SOCl2. Both derivatives were characterized by FTIR, (1)H NMR, TGA, and XRD techniques.
View Article and Find Full Text PDFA novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.
View Article and Find Full Text PDF