Publications by authors named "Jingqi Tian"

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

The self-assembled carbon nitride quantum dots (CNQDs) has been largely advanced owing to the structure-relative photocatalytic activities, especially its electronic structure, which can be regulated by defects, functional groups, and doping. However, there are still issues such as wide band gaps for the assembles and severe recombination of photoinduced charges. Herein, we demonstrate the self-assembly of CNQDs into fusiform hollow superstructures (CNFHs), induced by hydrogen bonding between the terminal functional groups (-OH, -COOH, and -NH).

View Article and Find Full Text PDF

The rational design of carbon-supported transition-metal single-atom catalysts requires the precise arrangement of heteroatoms within the single-atom catalysts. However, achieving this design is challenging due to the collapse of the structure during the pyrolysis. Here, we introduce a topological heteroatom-transfer strategy to prevent the collapse and accurately control the P coordination in carbon-supported single-atom catalysts.

View Article and Find Full Text PDF

Oxygen vacancies can change the physical and chemical properties of oxide semiconductors, which is applied to the field of ph otocatalysis, including water splitting, carbon dioxide reduction, and organic synthesis. However, the mechanism of oxygen vacancies in photocatalytic organic synthesis is still unclear. Herein, oxygen vacancies constructed on spinel CuFeO nanoparticles were found to trigger the photocatalytic synthesis of an unsaturated amide with high conversion and selectivity.

View Article and Find Full Text PDF

Correction for 'Wet chemical epitaxial growth of a cactus-like CuFeO2/ZnO heterojunction for improved photocatalysis' by Tengfei Jiang, et al., Dalton Trans., 2020, DOI: 10.

View Article and Find Full Text PDF

Herein, a wet chemical epitaxial growth method was employed to fabricate a cactus-like CuFeO2/ZnO heterojunction for the photocatalytic reduction of benzaldehyde to benzyl alcohol. The 1D ZnO nanorods in the heterojunction make contact with the 2D CuFeO2 nanoflakes at the atomic level, therefore providing a fast charge transfer channel along the direction parallel to the CuFeO2c-axis, leading to efficient charge separation and improved photocatalytic performance.

View Article and Find Full Text PDF

An efficient approach to boost the oxygen evolution activity of Fe-MOF nanorods was demonstrated via a synergistic strategy of Ni doping and fluorination.

View Article and Find Full Text PDF

An organic semiconducting polymer nanobiocatalyst (SPNB) composed of a semiconducting polymer core conjugated with microsomal cytochrome P450 (CYP) has been developed for photoactivation of intracellular redox. The core serves as the light-harvesting unit to initiate photoinduced electron transfer (PET) and facilitate the regeneration of dihydronicotinamide adenine dinucleotide phosphate (NADPH), while CYP is the catalytic center for intracellular redox. Under light irradiation, the semiconducting core can efficiently catalyze the generation of NADPH with a turnover frequency (TOF) 75 times higher than the reported nanosystems, ensuring the supply of the cofactor for intracellular redox.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light.

View Article and Find Full Text PDF

Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis.

View Article and Find Full Text PDF

Ultra-broadband light-absorbing materials are highly desired for effective solar-energy harvesting. Herein, novel cobalt phosphide double-shelled nanocages (CoP-NCs) are synthesized. Uniquely, these CoP-NCs are able to nonselectively absorb light spanning the full solar spectrum, benefiting from its electronic properties and hollow nanostructure.

View Article and Find Full Text PDF

Monitoring cellular redox homeostasis is critical to the understanding of many physiological functions ranging from immune reactions to metabolism, as well as to the understanding of pathological development ranging from tumorigenesis to aging. Nevertheless, there is currently a lack of appropriate probes for this ambition, which should be reversibly, sensitively, and promptly responsive to a wide range of physiological oxidants and reductants. In this work, a redox-sensitive fluorescence-switchable probe is designed based on graphene quantum dots (GQDs) functionalized with a chelated redox Fe/Fe couple.

View Article and Find Full Text PDF

Liver largely relies on its innate immunity to initiate quick and effective defense against potentially toxic agents, and innate immune cells are major players in this process. However, excessive inflammation due to out-of-control immune response may eventually cause liver injury. Thus, it is important to fully understand the regulatory mechanisms associated with liver inflammation.

View Article and Find Full Text PDF

It is highly desired but still challenging to develop active nonprecious metal hydrogen evolution reaction (HER) electrocatalysts operating under all pH conditions. Herein, the development of three-dimensional N-doped carbon-coated tungsten oxynitride nanowire arrays on carbon cloth as a highly efficient and durable HER cathode was explored. The material delivers current densities of 10 and 100 mA cm(-2) at overpotentials of 106 and 172 mV, respectively, in acidic medium, and it also performs well in neutral and basic electrolytes.

View Article and Find Full Text PDF

Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation.

View Article and Find Full Text PDF

The detection of specific DNA sequences plays an important role in the identification of disease-causing pathogens and genetic diseases, and photochemical water splitting offers a promising avenue to sustainable, environmentally friendly hydrogen production. Cobalt-phosphorus nanowires (CoP NWs) show a high fluorescence quenching ability and different affinity toward single- versus double-stranded DNA. Based on this result, the utilization of CoP NWs as fluorescent DNA nanosensors with a detection limit of 100 pM and a selectivity down to single-base mismatch was demonstrated.

View Article and Find Full Text PDF

The efficiency of many energy storage technologies is limited by the sluggish kinetics of the oxygen evolution reaction (OER) and it is thus of great importance to develop highly active OER electrocatalysts made from earth-abundant elements. In this communication, we report a novel metal-free oxygen evolution electrode with high catalytic activity and stability through simple acidic oxidation of commercially available carbon cloth (CC). The resulting acidically oxidized CC exhibits an overpotential of 328 mV and a Tafel slope of 82 mV dec(-1) with 100% Faradaic efficiency.

View Article and Find Full Text PDF

In this Letter, we demonstrate the direct growth of FeP nanoparticles film on carbon cloth (FeP/CC) through low-temperature phosphidation of its Fe3O4/CC precursor. Remarkably, when used as an integrated 3D hydrogen evolution cathode, this FeP/CC electrode exhibits ultrahigh catalytic activity comparable to commercial Pt/C and good stability in acidic media. This electrode also performs well in neutral solutions.

View Article and Find Full Text PDF

Head and neck paraganglioma is a rare and predominantly asymptomatic tumor. In the present study, an extremely rare case of asymptomatic paraganglioma located between the left common carotid artery and the left thyroid is described. The clinical presentation, cytomorphology and the immunohistochemical characteristics for the diagnosis of head and neck paraganglioma are described.

View Article and Find Full Text PDF

Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]-hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale-up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β-FeOOH NA/Ti precursor through a low-temperature phosphidation reaction.

View Article and Find Full Text PDF

In this communication, we demonstrate the rapid large-scale preparation of holey graphene nanosheets (h-G NSs) via low-temperature thermal treatment of oxidized graphite powder obtained by a modified Brodie method in air. The h-G NSs have nanopores with a high specific surface area and large pore volume. When used as a water cleaning agent, they exhibit excellent absorption performances for oils, solvents and dyes.

View Article and Find Full Text PDF

In this article we report on the one-step, rapid, high-yield synthesis of graphitic carbon nitride (g-C3N4) nanosheets for the first time. The nanosheets were obtained by pyrolyzing a melamine-KBH4 mixture under Ar. As a fluorosensor for Cu(2+), the g-C3N4 nanosheets exhibit a detection limit as low as 0.

View Article and Find Full Text PDF

Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self-supported Cu3 P nanowire arrays on commercial porous copper foam (Cu3 P NW/CF) from its Cu(OH)2 NW/CF precursor by a low-temperature phosphidation reaction. Remarkably, as an integrated three-dimensional hydrogen-evolving cathode operating in acidic electrolytes, Cu3 P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mV dec(-1) , and a Faradaic efficiency close to 100 %.

View Article and Find Full Text PDF

The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid-stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low-temperature phosphidation of a Co3O4/CNT precursor.

View Article and Find Full Text PDF

In this Communication, we report the topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth (CoP/CC) via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor. The CoP/CC, as a robust integrated 3D hydrogen-evolving cathode, shows a low onset overpotential of 38 mV and a small Tafel slope of 51 mV dec(-1), and it maintains its catalytic activity for at least 80,00 s in acidic media. It needs overpotentials (η) of 67, 100, and 204 mV to attain current densities of 10, 20, and 100 mA cm(-2), respectively.

View Article and Find Full Text PDF