Publications by authors named "Jingqi Pei"

TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous group of aggressive hematological malignancies commonly associated with treatment resistance, high risk of relapse, and mitochondrial dysregulation. We identified six mitochondria-affecting compounds (PS compounds) that exhibit selective cytotoxicity against AML cells in vitro. Structure-activity relationship studies identified six analogs from two original scaffolds that had over an order of magnitude difference between LD50 in AML and healthy peripheral blood mononuclear cells.

View Article and Find Full Text PDF

Macroautophagic recycling of dysfunctional mitochondria, known as mitophagy, is essential for mitochondrial homeostasis and cell viability. Accumulation of defective mitochondria and impaired mitophagy have been widely implicated in many neurodegenerative diseases, and loss-of-function mutations of PINK1 and Parkin, two key regulators of mitophagy, are amongst the most common causes of heritable parkinsonism. This has led to the hypothesis that pharmacological stimulation of mitophagy may be a feasible approach to combat neurodegeneration.

View Article and Find Full Text PDF

Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets.

View Article and Find Full Text PDF

The contribution of mitochondria to oncogenic transformation is a subject of wide interest and active study. As the field of cancer metabolism becomes more complex, the goal of targeting mitochondria using various compounds that inflict mitochondrial damage (so-called mitocans) is becoming quite popular. Unfortunately, many existing cytotoxicity assays, such as those based on tetrazolium salts or resazurin require functional mitochondrial enzymes for their performance.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive group of cancers with high mortality rates and significant relapse risks. Current treatments are insufficient, and new therapies are needed. Recent discoveries suggest that AML may be particularly sensitive to chemotherapeutics that target mitochondria.

View Article and Find Full Text PDF

Site-specific introduction of bioorthogonal handles into biomolecules provides powerful tools for studying and manipulating the structures and functions of proteins. Recent advances in bioorthogonal chemistry demonstrate that tetrazine-based bioorthogonal cycloaddition is a particularly useful methodology due to its high reactivity, biological selectivity, and turn-on property for fluorescence imaging. Despite its broad applications in protein labeling and imaging, utilization of tetrazine-based bioorthogonal cycloaddition has been limited to date by the requirement of a hydrophobic strained alkene reactive moiety.

View Article and Find Full Text PDF

Photoactivatable fluorophores afford powerful molecular tools to improve the spatial and temporal resolution of subcellular structures and dynamics. By performing a single sulfur-for-oxygen atom replacement within common fluorophores, we have developed a facile and general strategy to obtain photoactivatable fluorogenic dyes across a broad spectral range. Thiocarbonyl substitution within fluorophores results in significant loss of fluorescence via a photoinduced electron transfer-quenching mechanism as suggested by theoretical calculations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9psvhv3buqtcjujie71utulj5jihjdr6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once