In recent research, biochar has been proven to reduce the greenhouse gases and promote organic matter during the composting. However, gas degradation may be related to the microstructure of compost. To investigate the mechanism of biochar additive, composting was performed using swine manure, wheat straw and biochar and representative solid compost samples were analyzed to characterize the mixed biochar and compost particles.
View Article and Find Full Text PDFSupramolecular rather than covalent molecular engineering on Feringa motors can provide an alternative toolkit for tuning the properties of motorized materials through appropriate supramolecular structural perturbations, which are underexplored. Herein, a multicomponent supramolecular gel system is successfully prepared by employing an ultra-low molecular weight gelator and a modulator-Feringa motor. The electron microscopic, spectroscopic, and rheological data revealed that the morphology and mechanical properties of the gel can be tuned via a crystallographic mismatch branching (CMB) mechanism simply by adding varied amounts of motor modulators.
View Article and Find Full Text PDFWe present the construction of a M L -type metal-organic nanocage featuring four endohedral Feringa's motor motifs and its adaptive encapsulation towards a C guest molecule. The structure of the cage, though complicated on the H NMR spectrum due to the adoption of mixed ligands, was unambiguously characterized with a combination of ESI-MS, 2D DOSY, C NMR and particularly the SAXS technique. The molecular motor within the cage demonstrated similar photophysical properties to the uncoordinated one, indicating the motor's function was not compromised when it was anchored in such a confined nanospace.
View Article and Find Full Text PDF