The rapid advancement in the fabrication and culture of organs has marked a new era in biomedical research. While strides have been made in creating structurally diverse bioartificial organs, such as the liver, which serves as the focal organ in our study, the field lacks a uniform approach for the predictive assessment of liver function. Our research bridges this gap with the introduction of a novel, machine-learning-based "3P model" framework.
View Article and Find Full Text PDFA personalized point-of-interest (POI) recommender system is of great significance to facilitate the daily life of users. However, it suffers from some challenges, such as trustworthiness and data sparsity problems. Existing models only consider the trust user influence and ignore the role of the trust location.
View Article and Find Full Text PDFInsect pest recognition has always been a significant branch of agriculture and ecology. The slight variance among different kinds of insects in appearance makes it hard for human experts to recognize. It is increasingly imperative to finely recognize specific insects by employing machine learning methods.
View Article and Find Full Text PDFBMC Bioinformatics
November 2022
Pre-trained natural language processing models on a large natural language corpus can naturally transfer learned knowledge to protein domains by fine-tuning specific in-domain tasks. However, few studies focused on enriching such protein language models by jointly learning protein properties from strongly-correlated protein tasks. Here we elaborately designed a multi-task learning (MTL) architecture, aiming to decipher implicit structural and evolutionary information from three sequence-level classification tasks for protein family, superfamily and fold.
View Article and Find Full Text PDF