Publications by authors named "Jingmao Chi"

Surface-enhanced Raman scattering (SERS) is highly sensitive and label-free analytical technique based on Raman spectroscopy aided by field-multiplying plasmonic nanostructures. We report the use of SERS measurements of patient urine in conjunction with biostatistical algorithms to assess the treatment response of prostate cancer (PCa) in 12 recurrent (Re) and 63 nonrecurrent (NRe) patient cohorts. Multiple Raman spectra are collected from each urine sample using monodisperse silver nanoparticles (AgNPs) for Raman signal enhancement.

View Article and Find Full Text PDF

We report the utility of surface-enhanced Raman scattering (SERS) analysis of urine from deceased donors for prognosis of kidney transplant outcomes. Iodide-modified silver nanoparticles were used as the enabler for sensitive measurements of urine proteins. Principal component analysis (PCA) and linear discriminant analysis (LDA) were employed for the statistical analysis of the SERS data.

View Article and Find Full Text PDF

We report an early, noninvasive and rapid prognostic method of predicting potential acute kidney dysfunction using surface-enhanced Raman scattering (SERS). Our analysis was performed on urine samples collected prospectively from 58 kidney transplant patients using a He-Ne laser (632.8 nm) as the excitation source.

View Article and Find Full Text PDF

An unclad, multi-mode single crystal sapphire fiber was used as a platform, and immobilized colloidal Ag nanoparticles (NPs) were used as enabler, for evanescent-field fiber-optic sensing via surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G) solution. The dependence of the measured Raman intensity on NP coverage density (to a maximum of 120  particles/μm²) as well as the coverage length (to a maximum of 6 cm) was investigated. We demonstrate the utility of SERS-active sapphire fibers for sensitive measurements (10⁻⁸ M R6G).

View Article and Find Full Text PDF