Publications by authors named "Jingmai O'connor"

Enantiornithes are the most successful early-diverging avian clade, their fossils revealing important information regarding the structure of Cretaceous avifaunas and the parallel refinement of flight alongside the ornithuromorph lineage that includes modern birds. The most diverse recognized family of Early Cretaceous enantiornithines is the Bohaiornithidae, known from the Jehol Biota in northeastern China. Members of this clade enhance our understanding of intraclade morphological diversity and elucidate the independent evolution of this unique lineage.

View Article and Find Full Text PDF

Enantiornithines were the most diverse group of birds during the Cretaceous, comprising over half of all known species from this period. The fossil record and subsequently our knowledge of this clade is heavily skewed by the wealth of material from Lower Cretaceous deposits in China. In contrast, specimens from Upper Cretaceous deposits are rare and typically fragmentary, yet critical for understanding the extinction of this clade across the K-Pg boundary.

View Article and Find Full Text PDF

Diet is one of the most important aspects of an animal's ecology, as it reflects direct interactions with other organisms and shapes morphology, behavior, and other life history traits. Modern birds (Neornithes) have a highly efficient and phenotypically plastic digestive system, allowing them to utilize diverse trophic resources, and digestive function has been put forth as a factor in the selectivity of the end-Cretaceous mass extinction, in which only neornithine dinosaurs survived. Although diet is directly documented in several early-diverging avian lineages, only a single specimen preserves evidence of diet in Enantiornithes, the dominant group of terrestrial Cretaceous birds.

View Article and Find Full Text PDF

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones.

View Article and Find Full Text PDF

The Late Cretaceous of western North America supported diverse dinosaur assemblages, though understanding patterns of dinosaur diversity, evolution, and extinction has been historically limited by unequal geographic and temporal sampling. In particular, the existence and extent of faunal endemism along the eastern coastal plain of Laramidia continues to generate debate, and finer scale regional patterns remain elusive. Here, we report a new centrosaurine ceratopsid, , from the lower portion of the McClelland Ferry Member of the Judith River Formation in the Kennedy Coulee region along the Canada-USA border.

View Article and Find Full Text PDF

The typical mammalian neck consisting of seven cervical vertebrae (C1-C7) was established by the Late Permian in the cynodont forerunners of modern mammals. This structure is precisely adapted to facilitate movements of the head during feeding, locomotion, predator evasion, and social interactions. Eutheria, the clade including crown placentals, has a fossil record extending back more than 125 million years revealing significant morphological diversification in the Mesozoic.

View Article and Find Full Text PDF

Important transformations of the pectoral girdle are related to the appearance of flight capabilities in the Dinosauria. Previous studies on this topic focused mainly on paravians yet recent data suggests flight evolved in dinosaurs several times, including at least once among non-avialan paravians. Thus, to fully explore the evolution of flight-related avian shoulder girdle characteristics, it is necessary to compare morphology more broadly.

View Article and Find Full Text PDF

As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial.

View Article and Find Full Text PDF

Feathers are a primitive trait among pennaraptoran dinosaurs, which today are represented by crown birds (Neornithes), the only clade of dinosaurs to survive the end Cretaceous mass extinction. Feathers are central to many important functions and therefore, maintaining plumage function is of great importance for survival. Thus, molt - by which new feathers are formed to replace old ones, is an essential process.

View Article and Find Full Text PDF

Although it is commonly considered that, in birds, there is a trend towards reduced dentition, teeth persisted in birds for 90 Ma and numerous macroscopic morphologies are observed. However, the extent to which the microstructure of bird teeth differs from other lineages is poorly understood. To explore the microstructural differences of the teeth of birds in comparison with closely related non-avialan dinosaurs, the enamel and dentine-related features were evaluated in four Mesozoic paravian species from the Yanliao and Jehol biotas.

View Article and Find Full Text PDF

The Longipterygidae are a unique clade among the enantiornithines in that they exhibit elongate rostra (≥60% total skull length) with dentition restricted to the distal tip of the rostrum, and pedal morphologies suited for an arboreal lifestyle (as in other enantiornithines). This suite of features has made interpretations of this group's diet and ecology difficult to determine due to the lack of analogous taxa that exhibit similar morphologies together. Many extant bird groups exhibit rostral elongation, which is associated with several disparate ecologies and diets (.

View Article and Find Full Text PDF

The independent movements and flexibility of various parts of the skull, called cranial kinesis, are an evolutionary innovation that is found in living vertebrates only in some squamates and crown birds and is considered to be a major factor underpinning much of the enormous phenotypic and ecological diversity of living birds, the most diverse group of extant amniotes. Compared to the postcranium, our understanding of the evolutionary assemblage of the characteristic modern bird skull has been hampered by sparse fossil records of early cranial materials, with competing hypotheses regarding the evolutionary development of cranial kinesis among early members of the avialans. Here, a detailed three-dimensional reconstruction of the skull of the Early Cretaceous enantiornithine allows for its in-depth description, including elements that are poorly known among early-diverging avialans but are central to deciphering the mosaic assembly of features required for modern avian cranial kinesis.

View Article and Find Full Text PDF
Enantiornithes.

Curr Biol

October 2022

If you find a bird bone in deposits from the Cretaceous period (145-66 million years ago), chances are it will belong to an enantiornithine bird. This extinct group of birds was mostly arboreal and dominated terrestrial environments from 130 to 66 million years ago. With approximately 90 known genera, they account for more than half of the known diversity of Mesozoic birds.

View Article and Find Full Text PDF

The Early Cretaceous diversification of birds was a major event in the history of terrestrial ecosystems, occurring during the earliest phase of the Cretaceous Terrestrial Revolution, long before the origin of the bird crown-group. Frugivorous birds play an important role in seed dispersal today. However, evidence of fruit consumption in early birds from outside the crown-group has been lacking.

View Article and Find Full Text PDF

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic.

View Article and Find Full Text PDF

Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications.

View Article and Find Full Text PDF

Enantiornithes are the most successful group of Mesozoic birds, arguably representing the first global avian radiation, and commonly resolved as the sister to the Ornithuromorpha, the clade within which all living birds are nested. The wealth of fossils makes it feasible to comparatively test evolutionary hypotheses about the pattern and mode of eco-morphological diversity of these sister clades that co-existed for approximately 65 Ma. Here, we report a new Early Cretaceous enantiornithine, Yuanchuavis kompsosoura gen.

View Article and Find Full Text PDF

While the morphology and evolution of the quadrate among early birds and through the evolutionary origin of birds is not well known, we add to knowledge about that past diversity through description of the morphology of the quadrate in the unusually elongate skull of the Cretaceous enantiornithine bird Longipteryx chaoyangensis. The lateral and caudal surfaces of the quadrate are well exposed in two specimens revealing morphologies typical of early birds and their dinosaurian close relatives like a small otic head and two mandibular condyles. However, both skeletons exhibit quadrates with a unique, enlarged lateral crest that has not been previously described among Mesozoic birds.

View Article and Find Full Text PDF

The remains of ovarian follicles reported in nine specimens of basal birds represents one of the most remarkable examples of soft-tissue preservation in the Early Cretaceous Jehol Biota. This discovery was immediately contested and the structures alternatively interpreted as ingested seeds. Fragments of the purported follicles preserved in an enantiornithine (STM10-12) were extracted and subjected to multiple high-resolution analyses.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Feather molt is an important life-history process in birds, but little is known about its evolutionary history. Here, we report on the first fossilized evidence of sequential wing feather molt, a common strategy among extant birds, identified in the Early Cretaceous four-winged dromaeosaurid Microraptor. Analysis of wing feather molt patterns and ecological properties in extant birds imply that Microraptor maintained its flight ability throughout the entire annual cycle, including the molt period.

View Article and Find Full Text PDF

The Lower Cretaceous Huajiying Formation of the Sichakou Basin in northern Hebei Province, northern China contains key vertebrate taxa of the early Jehol Biota, e.g., , , , and This formation arguably documents the second-oldest bird-bearing horizon, producing the oldest fossil records of the two major Mesozoic avian groups Enantiornithes and Ornithuromorpha.

View Article and Find Full Text PDF

Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species.

View Article and Find Full Text PDF

Skeletal inclusions in approximately 99-million-year-old amber from northern Myanmar provide unprecedented insights into the soft tissue and skeletal anatomy of minute fauna, which are not typically preserved in other depositional environments. Among a diversity of vertebrates, seven specimens that preserve the skeletal remains of enantiornithine birds have previously been described, all of which (including at least one seemingly mature specimen) are smaller than specimens recovered from lithic materials. Here we describe an exceptionally well-preserved and diminutive bird-like skull that documents a new species, which we name Oculudentavis khaungraae gen.

View Article and Find Full Text PDF