Automated diagnostic systems can enhance the accuracy and efficiency of pathological diagnoses, nuclear segmentation plays a crucial role in computer-aided diagnosis systems for histopathology. However, achieving accurate nuclear segmentation is challenging due to the complex background tissue structures and significant variations in cell morphology and size in pathological images. In this study, we have proposed a U-Net based deep learning model, called MA-Net(Multifunctional Aggregation Network), to accurately segmenting nuclei from H&E stained images.
View Article and Find Full Text PDFOrbital angular momentum (OAM) has recently obtained tremendous research interest in free-space optical communications (FSO). During signal transmission within the free-space link, atmospheric turbulence (AT) poses a significant challenge as it diminishes the signal strength and introduce intermodal crosstalk, significantly reducing OAM mode detection accuracy. This issue directly impacts the performance of OAM-based communication systems and leads to a reduction in received information.
View Article and Find Full Text PDF