Publications by authors named "Jingjun Lin"

Unlabelled: (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.

View Article and Find Full Text PDF

The investigation of the mechanism underlying the impact of biological soft tissue sample preparation methods on laser-induced breakdown spectroscopy (LIBS) signals can enhance the stability of LIBS signals. Our study focused on four specific preparation methods applied to pork samples: rapid freezing, fresh slicing, drying, and pressing. The influence of various preparation techniques on the signal-to-noise ratio and fluctuation of Ca, Na, Mg, and CN bands within the sample spectra was assessed.

View Article and Find Full Text PDF

Lung cancer staging is crucial for personalized treatment and improved prognosis. We propose a novel bimodal diagnostic approach that integrates LIBS and Raman technologies into a single platform, enabling comprehensive tissue elemental and molecular analysis. This strategy identifies critical staging elements and molecular marker signatures of lung tumors.

View Article and Find Full Text PDF

In the field of Laser Induced Breakdown Spectroscopy (LIBS) research, the screening and extraction of complex spectra play a crucial role in enhancing the accuracy of quantitative analysis. This paper introduces a novel approach for multiple screenings of LIBS spectra using Lorentz Screening and Sensitivity and Volatility Analysis. Initially, Create symmetrical sampling standards for Lorentz fitting.

View Article and Find Full Text PDF

Competence development in (pneumococcus) is tightly intertwined with virulence. In addition to genes encoding genetic transformation machinery, the competence regulon also regulates the expression of allolytic factors, bacteriocins, and cytotoxins. Pneumococcal competence system has been extensively interrogated where the short transient competent state upregulates the expression of three distinct phases of "early," "late," and "delayed" genes.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate differentiation between malignant and benign lung tumors is crucial for treatment and prognosis, but it is challenging due to their varying growth rates and metastatic potentials.* -
  • Researchers used laser-induced breakdown spectroscopy (LIBS) and a deep learning model (RF-1D ResNet) to analyze spectral data from different lung tissues, achieving a high diagnostic accuracy of over 91%.* -
  • The study’s findings indicate that combining LIBS with deep learning techniques offers a promising approach for effectively diagnosing lung tumors, as demonstrated by a high area under the curve (AUC) of 0.99.*
View Article and Find Full Text PDF

Understanding the detection mechanism of hole defects in metal additive manufacturing (AM) components is of great significance for the detection of metal AM component defects using laser-induced breakdown spectroscopy (LIBS). In this work, the mapping relationship between the hole defects of metal AM components and the LIBS spectral signal was studied using the controlled variable method. The effect of hole defects mostly showed a suppression effect and peaked at a hole depth of 1.

View Article and Find Full Text PDF

Photocatalytic conversion of CO is of great interest but it often suffers sluggish oxidation half reaction and undesired by-products. Here, we report for the first the simultaneous co-photocatalytic CO reduction and ethanol oxidation towards one identical value-added CH CHO product on a rubidium and potassium co-modified carbon nitride (CN-KRb). The CN-KRb offers a record photocatalytic activity of 1212.

View Article and Find Full Text PDF

Antibiotic pollution has become an increasingly serious issue due to the extensive application of antibiotics, their resistance to removal, and the harmful effects on aquatic environments and humans. Breeding wastewater is one of the most important sources of antibiotics in the aquatic environment because of the undeveloped treatment systems in breeding farms. It is imperative to establish an effective antibiotic removal process for breeding wastewater.

View Article and Find Full Text PDF

Antibiotic resistance is a daunting challenge in modern medicine, and novel approaches that minimize the emergence of resistant pathogens are desperately needed. Antimicrobial peptides are newer therapeutics that attempt to do this; however, they fall short because of low to moderate antimicrobial activity, low protease stability, susceptibility to resistance development, and high cost of production. The recently developed random peptide mixtures (RPMs) are promising alternatives.

View Article and Find Full Text PDF

() is a member of the complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate.

View Article and Find Full Text PDF

This study aims at systematically examining the potential of removing the emerging pollutant sulfamethoxazole (SMX) from aqueous solution under photo-assisted peroxymonosulfate (PMS) activation by Fe(ii). The residual SMX was determined by HPLC analysis. The concentration of Fe(ii) ([Fe(ii)]) was monitored during SMX degradation.

View Article and Find Full Text PDF

The virulence behaviors of many Gram-negative bacterial pathogens are governed by quorum-sensing (QS), a hierarchical system of gene regulation that relies on population density by producing and detecting extracellular signaling molecules. Although extensively studied under conditions, adaptation of QS system to physiologically relevant host environment is not fully understood. In this study, we investigated the influence of lung environment on the regulation of virulence factors by QS in a mouse model of acute pneumonia.

View Article and Find Full Text PDF

In this paper, a comparative study on removal of the emerging pollutant phenazone (PNZ) by two treatment processes UVA/Fe(II)/persulfate (PS) and UVA/Fe(II)/peroxymonosulfate (PMS) was conducted. The two processes showed high efficiency in PNZ degradation, followed by a reasonable mineralization. The treatment system with PMS was found to be more efficient for PNZ degradation than that with PS due to the larger amounts of radicals generated.

View Article and Find Full Text PDF

Goblet cell hyperplasia and metaplasia and excessive mucus are prominent pathologies of chronic airway diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and chronic bronchitis. Chronic infection by respiratory pathogens, including Pseudomonas aeruginosa, exacerbates cyclical proinflammatory responses and mucus hypersecretion. P.

View Article and Find Full Text PDF

The competence regulon of pneumococcus regulates both genetic transformation and virulence. However, competence induction during host infection has not been examined. By using the serotype 2 strain D39, we transcriptionally fused the firefly luciferase () to competence-specific genes and spatiotemporally monitored the competence development in a mouse model of pneumonia-derived sepsis.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a human pathogen that uses a specific communication system to gain antibiotic resistance and attack the host.
  • Researchers have designed new peptides that can block this communication, which may help in understanding cell behavior and reducing infections.
  • One of the peptides showed strong effectiveness in lab tests, improving resistance to breakdown while being safe, and it also reduced mortality in mice suffering from pneumonia caused by the pathogen.
View Article and Find Full Text PDF

(pneumococcus) causes multiple infectious diseases. The pneumococcal competence system facilitates genetic transformation, spreads antibiotic resistance, and contributes to virulence. DNA-processing protein A (DprA) regulates the exit of pneumococcus from the competent state.

View Article and Find Full Text PDF

Because of exposure to environmental pollutants, infectious agents, and genetic predisposition, companion animals develop respiratory illnesses similar to those in humans. Older dogs of smaller breeds develop canine infectious respiratory disease, chronic bronchitis, and chronic obstructive pulmonary disease, with chronic lung infection, airway goblet cell hyperplasia and metaplasia, and mucus hypersecretion. Excessive mucus clogs airways, reduces gas exchanges, disables the mucociliary clearance, and reduces drug penetration.

View Article and Find Full Text PDF

Streptococcus pneumoniae (pneumococcus) is a prevalent human pathogen responsible for a variety of diseases, including pneumonia, bacteremia, sepsis, meningitis and otitis media, with a death toll of >22 000 a year in the United States alone. Pneumococcus uses the competence regulon and its associated signaling peptide, the competence stimulating peptide (CSP), to initiate its attack on the host and establish an infection. In this work, we set out to: 1) develop a pan-group quorum sensing inhibitor that could effectively interact with both the pneumococcus ComD1 and ComD2 receptors; and 2) evaluate the utility of dominant-negative CSPs (dnCSPs) in attenuating pneumococcus infectivity.

View Article and Find Full Text PDF

Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared with that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewis(x), a preferred binding receptor for PA.

View Article and Find Full Text PDF

Horizontal gene transfer mediated by the competence regulon is a major driver of genome plasticity in Streptococcus pneumoniae. When pneumococcal cells enter the competent state, about 6% of the genes in the genome are up-regulated. Among these, some genes are essential for genetic transformation while others are dispensable for the process.

View Article and Find Full Text PDF

The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation.

View Article and Find Full Text PDF

As innate immune cells, macrophages are expected to respond to mycobacterial infection equally in both Mycobacterium bovis-infected cows and healthy cows. We previously found that monocyte-derived macrophages (MDMs) from M. bovis-infected cows respond differently than MDMs from healthy cows when exposed to in vitro M.

View Article and Find Full Text PDF

Mycobacterium bovis is the etiological factor of bovine tuberculosis (BTB), posing a significant problem to domestic cattle. The bacterium is also zoonotic, affecting human health worldwide. Macrophage evasion of the bacterium involves mycobacterial molecules such as MB1684 (ornithine carbamoyltransferase).

View Article and Find Full Text PDF