Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns.
View Article and Find Full Text PDFLaser shock peening (LSP) is a powerful technique for improving the fatigue performance of metallic components by customizing compressive residual stresses in the desired near-surface regions. In this study, the residual stress distribution characteristics of 6061-T6 aluminum alloy induced by LSP were identified by the X-ray diffraction method, and their dependent factors (i.e.
View Article and Find Full Text PDFIn the present research, coaxial one-side resistance spot welding was performed to join Al5052 and CFRP sheets with different welding currents. The mechanical performance of the cross-lap joint was clarified experimentally. The cross-section of the welded joint and the fracture surfaces was subjected to multi-scale characterization.
View Article and Find Full Text PDFA sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool.
View Article and Find Full Text PDFBackground: To examine the association between urban neighborhood disorder and the recurrence risk of patients with acute myocardial infarction (AMI) in central Beijing, China.
Methods: Recurrent AMI was identified by the Beijing Monitoring System for Cardiovascular Diseases through the end of 2019 for patients discharged with AMI between 2007 and 2017. Cox proportional hazards models were performed to estimate associations between neighborhood disorder and AMI recurrence.
Uncovering brain-tissue microstructure including axonal characteristics is a major neuroimaging research focus. Within this scope, anisotropic properties of magnetic susceptibility in white matter have been successfully employed to estimate primary axonal trajectories using mono-tensorial models. However, anisotropic susceptibility has not yet been considered for modeling more complex fiber structures within a voxel, such as intersecting bundles, or an estimation of orientation distribution functions (ODFs).
View Article and Find Full Text PDFExcitation in MRI is traditionally done at the Larmor frequency, where the energy of each radiofrequency photon corresponds to the energy difference between two spin states. However, if multiple radiofrequencies are employed, then multiphoton excitation can also occur when the sum or difference of multiple photon frequencies equals the Larmor frequency. Although multiphoton excitation has been known since the early days of NMR, it has been relatively unexplored in MRI.
View Article and Find Full Text PDFThe replacement of aryl rings with saturated carbocyclic structures has garnered significant interest in drug discovery due to the potential for improved pharmacokinetic properties upon substitution. In particular, 1,3-difunctionalized bicyclo[1.1.
View Article and Find Full Text PDFIn this paper is described a synthesis of enantiomerically enriched, configurationally stable organozinc reagents by catalytic enantioselective carbozincation of a vinylboronic ester. This process furnishes enantiomerically enriched α-borylzinc intermediates that are shown to undergo stereospecific reactions, producing enantioenriched secondary boronic ester products. The properties of the intermediate α-borylzinc reagent are probed and the synthetic utility of the products is demonstrated by application to the synthesis of (-)-aphanorphine and (-)-enterolactone.
View Article and Find Full Text PDFPurpose: A method named DECOMPOSE-QSM is developed to decompose bulk susceptibility measured with QSM into sub-voxel paramagnetic and diamagnetic components based on a three-pool complex signal model.
Methods: Multi-echo gradient echo signal is modeled as a summation of three weighted exponentials corresponding to three types of susceptibility sources: reference susceptibility, diamagnetic and paramagnetic susceptibility relative to the reference. Paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) maps are constructed to represent the sub-voxel compartments by solving for linear and nonlinear parameters in the model.
Purpose: To investigate the symmetry constraint in susceptibility tensor imaging.
Theory: The linear relationship between the MRI frequency shift and the magnetic susceptibility tensor is derived without constraining the tensor to be symmetric. In the asymmetric case, the system matrix is shown to be maximally rank 6.
Selenoproteins contain the amino acid selenocysteine (Sec) and are found in all domains of life. The functions of many selenoproteins are poorly understood, partly due to difficulties in producing recombinant selenoproteins for cell-biological evaluation. Endogenous mammalian selenoproteins are produced through a noncanonical translation mechanism requiring suppression of the UGA stop codon and a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA.
View Article and Find Full Text PDFOne approach to magnetogenetics uses radiofrequency (RF) waves to activate transient receptor potential channels (TRPV1 and TRPV4) that are coupled to cellular ferritins. The mechanisms underlying this effect are unclear and controversial. Theoretical calculations suggest that the heat produced by RF fields is likely orders of magnitude weaker than needed for channel activation.
View Article and Find Full Text PDFA positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks.
View Article and Find Full Text PDFA precisely controlled drug release is a great challenge in exploring methodologies of drug administration and fighting drug resistance for successful cancer chemotherapy. Herein, we developed a dual-mode nanocarrier to specifically deliver doxorubicin (Dox) and precisely control the drug release in target tumor cells. This hierarchical nanocarrier consisted of a gold nanorod as the heating core, biodegradable mesoporous silica as the storage chamber, and graphene quantum dot (GQD) as a drug carrier.
View Article and Find Full Text PDFPurpose: The aim of this study was to measure and characterize breathing-induced motion artifacts in fast helical free-breathing CT scans.
Methods: Ten lung cancer patients were scanned using fast helical CT during free breathing. In each case, 25 low-dose CT scans were acquired in alternating craniocaudal and caudocranial directions.
Platelet activation is an important event involved in the pathophysiological processes of the coagulation system. Clinical evidence has shown that platelets undergo distinctive pathological processes during sepsis. Unfortunately, how platelets physiologically respond to inflammation or sepsis is not well understood.
View Article and Find Full Text PDFObjective: To explore the effects of exogenous carbon monoxide-releasing molecules 2 (CORM-2) on LPS-induced abnormal activation of platelets in peripheral blood of healthy human donors and its possible molecular mechanism.
Methods: Venous blood samples were collected from a healthy volunteer, and platelet-rich plasma (PRP) from the blood were isolated by differential centrifugation. The PRP was subpackaged into siliconized test tubes and then divided into control group, LPS group, inactive CORM-2 (iCORM-2) group, 10 µmol/L CORM-2 group, and 50 µmol/L CORM-2 group according to the random number table, with 3 tubes in each group.
A highly sensitive and selective photoelectrochemical (PEC) biosensor for Hg(2+) detection was developed on the basis of the synergistic effect of exciton energy transfer (EET) between CdS quantum dots (QDs) and Au nanoparticles (NPs) coupled with sensitization of rhodamine 123 (Rh123) for signal amplification. First, the TiO2/CdS hybrid structure obtained by depositing CdS QDs on TiO2 film was employed as a matrix for immobilizing probe DNA (pDNA). Next, Rh123 was introduced into the pDNA terminal, and then Au NP labeled target DNA (Au-tDNA) was hybridized with pDNA to form a rod-like double helix structure.
View Article and Find Full Text PDFGreat challenges in investigating the release of drug in complex cellular microenvironments necessitate the development of stimuli-responsive drug delivery systems with real-time monitoring capability. In this work, a smart drug nanocarrier based on fluorescence resonance energy transfer (FRET) is fabricated by capping graphene quantum dots (GQDs, the acceptor) onto fluorescent mesoporous silica nanoparticles (FMSNs, the donor) via ATP aptamer for real-time monitoring of ATP-triggered drug release. Under extracellular conditions, the fluorescence of FMSNs remains in the "off" state in the low ATP level which is unable to trigger the release of drug.
View Article and Find Full Text PDF