IEEE Trans Pattern Anal Mach Intell
November 2023
Reinforcement Learning (RL) can be considered as a sequence modeling task, where an agent employs a sequence of past state-action-reward experiences to predict a sequence of future actions. In this work, we propose State-Action-Reward Transformer (StARformer), a Transformer architecture for robot learning with image inputs, which explicitly models short-term state-action-reward representations (StAR-representations), essentially introducing a Markovian-like inductive bias to improve long-term modeling. StARformer first extracts StAR-representations using self-attending patches of image states, action, and reward tokens within a short temporal window.
View Article and Find Full Text PDF