Publications by authors named "Jinghu Gao"

The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C.

View Article and Find Full Text PDF

Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity.

View Article and Find Full Text PDF

The ACK family tyrosine kinase SID-3 is involved in the endocytic uptake of double-stranded RNA. Here we identified SID-3 as a previously unappreciated recycling regulator in the Caenorhabditis elegans intestine. The RAB-10 effector EHBP-1 is required for the endosomal localization of SID-3.

View Article and Find Full Text PDF

To systematically explore the genes mediating functional crosstalk between metazoan biological processes, we apply comparative genetic interaction (GI) mapping in Saccharomyces cerevisiae and Caenorhabditis elegans to generate an inter-bioprocess network consisting of 178 C. elegans GIs. The GI network spans six annotated biological processes including aging, intracellular transport, microtubule-based processes, cytokinesis, lipid metabolic processes, and anatomical structure development.

View Article and Find Full Text PDF

Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN-1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures.

View Article and Find Full Text PDF

RAB-10/Rab10 is a master regulator of endocytic recycling in epithelial cells. To better understand the regulation of RAB-10 activity, we sought to identify RAB-10(GDP)-interacting proteins. One novel RAB-10(GDP)-binding partner that we identified, LET-413, is the homologue of Scrib/Erbin.

View Article and Find Full Text PDF