Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes.
View Article and Find Full Text PDFMediated through the combined action of STIM proteins and Orai channels, store-operated Ca entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca and Ca signals.
View Article and Find Full Text PDFHelicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory.
View Article and Find Full Text PDFIn order to investigate the effects of interplanting and direct seeding on the photosynthesis characteristics of summer maize and its utilization of solar and heat resources, two summer maize cultivars (Zhengdan 958 and Denghai 661) were planted in the farmlands of Denghai Seed Co. Ltd in Laizhou City of Shandong Province, with 67500 plants x hm(-2) and three sowing dates. The above-ground biomass, plant growth rate, leaf area index, and net photosynthetic rate per ear leaf were measured to reveal the photosynthesis characteristics of test cultivars.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2010
According to the maize yield at plant density of 15000 ind x hm(-2) in 2007, the leaf-redundant type (cultivar Chaoshi 1) and non-redundant type (cultivar Chaoshi 3) at low plant density were selected, and the changes of their above-ground dry matter accumulation and grain yield after cutting all leaves to 1/2 (T1) and 1/4 (T2) at anthesis at the optimal density and under high-yielding condition were analyzed in 2008, aimed to approach whether the leaf redundancy exists in high-yielding maize colonies. The characters of grain-filling were simulated by Richards' model, and the photosynthetic characteristics and chlorophyll fluorescence of the leaves on ear position were determined to reveal the activities of photosynthesis after the removal of redundancy. The results showed that at optimal plant density and under high-yielding condition, both the redundant and non-redundant types had leaf redundancy.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
June 2010
In the title mol-ecule, C(21)H(14)ClFIN(3)O, the bicyclic ring system has a twisted conformation; the two fused rings form a dihedral angle of 4.5 (1)°. The dihedral angles between the fused ring system and the benzene rings are 27.
View Article and Find Full Text PDFTo reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2).
View Article and Find Full Text PDFComplexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex.
View Article and Find Full Text PDFComplexin is a cytoplasmic protein that plays an important role in the neurotransmitters release triggered by action potential. Previous studies suggested that complexin performs its functions through interaction with the SNARE complex. The crystal structure of complexin/SNARE complex revealed that complexin binds to SNARE core complex in an anti-parallel conformation with its residues 48 - 70.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2006
The formation of the functional SNARE complex in vivo is central to the fast neurotransmitter release at the neuronal terminal. Numerous studies revealed that this process involves progressive assembly of an alpha-helical bundle and is dynamically reversible. So far many proteins directly or indirectly take part in this process.
View Article and Find Full Text PDF