Publications by authors named "Jingfu Jia"

Article Synopsis
  • Researchers developed a new ultrasonic microfluidic technology called the ultrasonic microreactor (USMR) to create uniform liposomes, which are small drug carriers, using antisolvent precipitation methods.
  • The USMR comes in two designs (co-flow and impinge flow), with the impinge flow demonstrating better control over droplet sizes and lower polydispersity, contributing to more consistent liposome production.
  • The technology allows for high stability, rapid mixing, and high yield (up to 108 g/h), showing promise for efficiently fabricating targeted nanomedicines with precise size and distribution.
View Article and Find Full Text PDF

Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of ) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels-Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking.

View Article and Find Full Text PDF

Biocompatible skin wound dressing materials with long-term therapeutic windows and anti-infection properties have attracted great attention all over the world. The cooperation between essential oil and non-toxic or bio-based polymers was a promising strategy. However, the inherent volatility and chemical instability of most ingredients in essential oils make the sustained pharmacological activity of essential oil-based biomaterials a challenge.

View Article and Find Full Text PDF

Antimicrobial medicine and food packages based on bio-based film containing essential oils have attracted great attention worldwide. However, the controlled release of essential oils from these film nanocomposites is still a big challenge. In this study, a long-term antibacterial film nanocomposite composed of zein film and cinnamon essential oil (CEO) loaded MCM-41 silica nanoparticles was prepared.

View Article and Find Full Text PDF

It is still controversial whether poor aqueous solubility is the most primary reason for the low oral bioavailability of insoluble drugs. Therefore, in this study, berberine-loaded solid polymeric particles (BPs) of varied dissolution profiles with β-cyclodextrin (β-CD) as carrier were fabricated using solution-enhanced dispersion by supercritical fluids (SEDS), and the relationship between dissolution and berberine (BBR) bioavailability was evaluated. Dissolution property was controlled via particle morphology manipulation, which was achieved by adjusting several key operating parameters during the SEDS process.

View Article and Find Full Text PDF

can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation.

View Article and Find Full Text PDF

Ultrasound-induced synthesis of chitosan-modified nano-scale graphene oxide (CS-NGO) hybrid nanosheets, which has great potential pharmaceutical applications, in supercritical CO2 without catalyst was presented for the first time. The preparation process does not require organic solvent and post-processing, and CO2 easily escapes from the product. The morphology and structure of the CS-NGO, characterized using scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis, confirms that it was combined via the amide linkage, and had excellent dispersibility and stability toward acidic and physiological aqueous solution, which implies that it could be used as a drug-carrier.

View Article and Find Full Text PDF

Controllable morphology and size of crystal materials prepared by using a supercritical antisolvent (SAS) technique is still challenge. In this study, ultrasound was introduced into the SAS process to produce the particles of curcumin, a model compound. The effects of ultrasound power on the particle morphology and size were investigated in the range of 0 and 240 W at three different pressures.

View Article and Find Full Text PDF

The aim of the current study is to investigate the feasibility of thermo-chemical conversion of rice husk in hot-compressed water via ultrasonic pretreatment to increase the bio-oil yield. The results show that ultrasonic pretreatment remarkably changes the structures of the rice husk, such as enhancing swelling and surface area, eroding lignin structure, and resulting in more exposure of the cellulose and hemicellulose. The highest bio-oil yield of 42.

View Article and Find Full Text PDF

Background: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections) are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications.

View Article and Find Full Text PDF

A new molecularly imprinted polymer (MIP) has been prepared on silica beads using the radical "grafting from" polymerization method for selective extraction of minor contaminant mycotoxin of patulin (PTL). After the introduction of amino groups onto the silica surface with 3-aminopropyltriethoxysilane, azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanopentanoic acid). The scale-up synthesis of MIP was then carried out in the presence of 6-hydroxynicotinic acid as template substitute, functional, and cross-linking monomers.

View Article and Find Full Text PDF