Transepithelial electrical resistance (TEER) measurement is a label free, rapid and real-time technique, which is commonly used to evaluate the integrity of cell barriers. TEER characterization is important for applications, such as tissue (brain, intestines, lungs) barrier modeling, drug screening, and cell growth monitoring. Traditional TEER methods usually only show the average impedance of the whole cell layer, and lack accuracy and the characterization of internal spatial differences within cell layer regions.
View Article and Find Full Text PDFIn this paper, we developed a paper-based fluorescent sensor using functional composite materials composed of graphene quantum dots (GQDs) coated with molecularly imprinted polymers (MIPs) for the selective detection of tetracycline (TC) in water. GQDs, as eco-friendly fluorophores, were chemically grafted onto the surface of paper fibers. MIPs, serving as the recognition element, were then wrapped around the GQDs via precipitation polymerization using 3-aminopropyltriethoxysilane (APTES) as the functional monomer.
View Article and Find Full Text PDFThree-dimensional (3D) porous graphene-based materials have displayed attractive electrochemical catalysis and sensing performances, benefiting from their high porosity, large surface area, and excellent electrical conductivity. In this work, a novel electrochemical sensor based on 3D porous reduced graphene (3DPrGO) and ion-imprinted polymer (IIP) was developed for trace cadmium ion (Cd(II)) detection in water. The 3DPrGO was synthesized in situ at a glassy carbon electrode (GCE) surface using a polystyrene (PS) colloidal crystal template and the electrodeposition method.
View Article and Find Full Text PDFA novel multi-functional microfluidic paper-based analytical device (μPAD) integrated with ion imprinted polymers (IIPs) was proposed for specific, portable and low-cost detection of cadmium (Cd(II)) in water. The IIP was grafted on paper and integrated into the μPAD for separation of Cd(II) through multi-layer design. The paper-based screen printed carbon electrode (pSPCE) modified with reduced graphene oxide was fabricated and combined with the μPAD for electrochemical sensing of the separated Cd(II).
View Article and Find Full Text PDFJuxta-anastomotic stenosis is a challenging problem that often causes non-maturation and decreases the patency of an arteriovenous fistula (AVF). Injury to the veins and arteries during the operation and hemodynamic changes can lead to intimal hyperplasia, leading to juxta-anastomotic stenosis. To reduce injury to the veins and arteries during the operation, this study proposes a new modified no-touch technique (MNTT) for AVF construction that can decrease the rate of juxta-anastomotic stenosis and improve the AVF patency.
View Article and Find Full Text PDFA novel electrochemical sensor based on electropolymerized ion imprinted poly (o-phenylenediamine) PoPD/electrochemical reduced graphene (ERGO) composite on glass carbon electrode (GCE) was fabricated for selective and sensitive determination of trace Cd(II) in water. ERGO was first deposited on the surface of GCE by electrochemical cyclic voltammetry (CV) scanning to enhance the electron transport activity at electrode surface. The ion imprinted polymer (IIP) of imprinted PoPD was then in situ electropolymerized on ERGO via CV scanning with oPD as functional monomer and Cd(II) ions as template, following removal of the template using electrochemical peroxidation method.
View Article and Find Full Text PDFWe have developed a novel mediated biochemical oxygen demand (BOD) biosensor based on immobilized () on three-dimensional (3D) porous graphene-polypyrrole (rGO-PPy) composite. The 3D porous rGO-PPy composite was prepared using hydrothermal method following with electropolymerization. Then the 3D porous rGO-PPy composite was used as a support for immobilizing negatively charged denoted as rGO-PPy- through coordination and electrostatic interaction.
View Article and Find Full Text PDFTIM-1 and TIM-4 proteins have become increasingly attractive for their critical functions in immune modulation, particularly in CD4(+) Th2 cell activation. Thus, these proteins were hypothesized to regulate adaptive humoral immunity. However, further evidence is needed to validate this hypothesis.
View Article and Find Full Text PDFAn economical and high-performance bioanalyzer, with no use of laptop computer, based on the use of TSPR1k23 biosensors was systematically designed, and validated experimentally for its high performance. The analyzer is composed of a micro-flow cell, a thermoelectric cooler (TEC), a clamp, a touch-screen monitor, and an electronic control unit (ECU) incorporated with photoelectric conversion device. The micro-flow cell is made of stainless steel with high thermal conductivity, and the micro-flow system is based on PID temperature-controlled algorithm to keep the constant temperature (25 degrees C) of the liquid sample via thermal exchange with the clamp.
View Article and Find Full Text PDF