Publications by authors named "Jingdong Qin"

Sphingosine-1-phosphate is synthesized by two sphingosine kinases, cytosolic SK1 and nuclear SK2 but SK2 expression was much higher than SK1in mouse skin fibroblasts. However, in SK2 cells, SK1 expression was markedly increased to SK2 levels whereas in SK1 cells, SK2 expression was unaffected. Ceramide, glucosylceramide and sphingosine levels were all increased in SK1 but less so in SK2 cells and S1P levels were not significantly reduced in either SK1 or SK2 cells.

View Article and Find Full Text PDF

The use of RNAi to suppress protein synthesis offers a potential way of reducing the level of enzymes or the synthesis of mutant toxic proteins but there are few tools currently available for their delivery. To address this problem, bioconjugated quantum dots (QDs) containing a hydrophobic component (N-palmitate) and a sequence VKIKK designed to traverse across cell membranes and visualize drug delivery were developed and tested on cell lines of brain origin. We used the Zn outer shell of the QD to bind HIS in JB577 (W•G•Dap(N-Palmitoyl)•VKIKK•P •G •H ) and by a gel-shift assay showed that siRNAs would bind to the positively charged KIKK sequence.

View Article and Find Full Text PDF

Increased synthesis of hyaluronic acid (HA) is often associated with increased metastatic potential and invasivity of tumor cells. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis, and has been studied as a potential anti-tumor drug to inhibit the growth of primary tumors and distant metastasis of tumor cells. Although several studies reported that the anticancer effects of MU are mediated by inhibition of HA signaling, the mechanism still needs to be clarified.

View Article and Find Full Text PDF

NSMase2 is associated to the plasma membrane, whereas ASMase is predominantly lysosomal; both hydrolyze sphingomyelin (SM) to ceramide and phosphocholine. Although SM accumulated in both ASMase(-/-) and fro/fro (NSMase2(-/-)) fibroblasts, the reduction of ceramides was more dramatic in fro/fro cells. ASMase mRNA, protein and enzyme activity were substantially elevated in fro/fro fibroblasts.

View Article and Find Full Text PDF

Fibroblasts from the fro/fro mouse, with a deletion in the Smpd3 gene coding for the active site of neutral sphingomyelinase 2 (NSMase2), secreted increased amounts of hyaluronan (HA). This was reversed by transfection with the Smpd3 gene, suggesting a connection between sphingolipid and glycosaminoglycan metabolism. The deficiency of NSMase2 resulted in storage of sphingomyelin (SM) and cholesterol with a 50% reduction in ceramides (Cer).

View Article and Find Full Text PDF

The immunomodulator drug Gilenya (FTY720), marketed as the first oral sphingosine-1-phosphate receptor (S1P-R) modulator for treatment of Multiple Sclerosis (MS) also inhibits lysosomal acid sphingomyelinase (ASMase). Treatment of cultured cells for 24 h with FTY720 (up to 10 μM) inhibited ASMase by >80% and this could be reversed by pre-treatment with the cathepsin protease inhibitor leupeptin (5 μM). In contrast, neutral sphingomyelinase activity was unaffected and sphingosine-1-phosphate treatment had no effect on ASMase.

View Article and Find Full Text PDF

Both cultured neonatal rat hippocampal neurons and differentiated oligodendrocytes rapidly metabolized exogenous C(2)- and C(6)-ceramides to sphingosine (Sph) and sphingosine 1-phosphate (S1P) but only minimally to C(16-24)-ceramides. Dihydrosphinolipids were unaffected but were increased by exogenous C(6)-dihydroceramide. Conversely, quantitative liquid chromatography-tandem mass spectrometry technology showed that exogenous S1P (0.

View Article and Find Full Text PDF

Reactive oxygen species play a major role in neurodegeneration. Increasing concentrations of peroxide induce neural cell death through activation of pro-apoptotic pathways. We now report that hydrogen peroxide generated sn-2 oxidized phosphatidylcholine (OxPC) in neonatal rat oligodendrocytes and that synthetic OxPC [1-palmitoyl-2-(5'-oxo)valeryl-sn-glycero-3 phosphorylcholine, POVPC] also induced apoptosis in neonatal rat oligodendrocytes.

View Article and Find Full Text PDF

Demyelination is a common result of oxidative stress in the nervous system, and we report here that the response of oligodendrocytes to oxidative stress involves the receptor for advanced glycation end products (RAGE). RAGE has not previously been reported in neonatal rat oligodendrocytes (NRO), but, by using primers specific for rat RAGE, we were able to show expression of messenger RNA (mRNA) for RAGE in NRO, and a 55-kDa protein was detected by Western blotting with antibodies to RAGE. Neonatal rat oligodendrocytes stained strongly for RAGE, suggesting membrane localization of RAGE.

View Article and Find Full Text PDF