Water-solid contact electrification is a common physical phenomenon involving interfacial electron and ion transfer, recently discovered to trigger unique redox reactions. Here, we demonstrate the generation of both hydroxyl and hydrogen radicals when water contacts SiO. The coexistence of hydroxyl and hydrogen radicals is confirmed by simultaneous nitrate reduction and nitrite oxidation during the contact.
View Article and Find Full Text PDFHistone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc.
View Article and Find Full Text PDFEpigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown.
View Article and Find Full Text PDFHDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy.
View Article and Find Full Text PDFThe multitarget-directed ligands approach represents a potential strategy to provide effective treatments for Alzheimer's disease (AD) given its multifactorial pathology. Herein, a series of N-benzyl piperidine derivatives were designed, synthesized, and biologically characterized for dual inhibitions of histone deacetylase (HDAC) and acetylcholinesterase (AChE). Among the compounds tested, d5 and d10 exhibited dual enzyme inhibitions (d5: HDAC = 0.
View Article and Find Full Text PDFC-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation.
View Article and Find Full Text PDFAs the vital component of innate immune system, the NLRP3 inflammasome is implicated in the onset and progression of a variety of inflammatory diseases and has emerged as an attractive drug target. Herein a series of novel phenyl vinyl sulfone based NLRP3 inflammasome inhibitors were designed, synthesized and biologically characterized. The most potent two hits 7a and 5b showed inhibition on the NLRP3 inflammasome with the IC of 1.
View Article and Find Full Text PDFOff-target toxicity is one of the main challenges faced by anticancer chemotherapeutics. For tumor targeted and precision chemotherapy, we take the advantages of the ligand directed tumor active targeting of small molecule drug conjugates (SMDCs) and the passive tumor targeting of nanoparticles via the enhanced penetration and retention (EPR) effects, put forward a branched small molecule drug conjugate (BSMDC) nanomedicine design concept. In a proof of concept, we used pentaerythritol as the branched moiety, galactosamine (GalN) as the hepatocellular carcinoma (HCC) directing ligands, PTX as a payload, and a stearoyl moiety as the amphiphilic property adjusting group, designed and synthesized BSMDC 1 and prepared its NPs.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) is a potential target for Alzheimer's disease (AD). In this study, a series of novel phenothiazine-, memantine-, and 1,2,3,4-tetrahydro-γ-carboline-based HDAC6 inhibitors with a variety of linker moieties were designed and synthesized. As a hydrochloride salt, the phenothiazine-based hydroxamic acid W5 with a pyridyl-containing linker motif was identified as a high potent and selective HDAC6 inhibitor.
View Article and Find Full Text PDFHistone deacetylases (HDACs) have been indicated important roles in neurodegenerative disorders including Alzheimer's disease (AD). Herein, a series of novel compounds that contain a memantine moiety were designed to target HDACs and N-methyl-d-aspartate receptor (NMDAR) which are related to the treatment of AD. Biological characterization established that compound 9d exhibited a balanced inhibitory activity on NMDAR and HDACs.
View Article and Find Full Text PDFIn order to develop multitarget-directed ligands as potential treatments for Alzheimer's disease, twenty-eight new tacrine-hydroxamate derivatives were designed, synthesized, and biologically evaluated. As expected, most of the compounds exhibited inhibitory activities against cholinesterases (ChEs) and histone deacetylase (HDACs). Among the tested compounds, A10 showed not only potent and selective inhibition on AChE at sub-nanomolar potency (AChE = 0.
View Article and Find Full Text PDFNLRP3 (Nod-like receptor protein 3) belongs to the NOD-like receptor family, which is activated by pathogen and damage-associated signals to form a multimeric protein complex, known as the NLRP3 inflammasome. NLRP3 inflammasome activation leads to release of proinflammatory cytokines IL-1β and IL-18, thus inducing pyroptosis, a programmed cell death mechanism. Dysregulation of the NLRP3 inflammasome pathway is closely related to the development of many human diseases, such as neuroinflammation, metabolic inflammation, and immune inflammation.
View Article and Find Full Text PDFGraphene oxide (GO) has attracted huge attention in biomedical field in recent years. However, limited attempts have been invested in utilizing GO on active targeted delivery for gene therapy in liver cancer treatments. Glycyrrhetinic acid (GA) has been reported to be widely used as a targeting ligand to functionalize nanomaterials to treat hepatocellular carcinoma.
View Article and Find Full Text PDFThrough rational drug design, we previously identified an indenoprazole derivative, 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)acetamide (LL01), as a potent tubulin polymerization inhibitor targeting the tubulin colchicine binding site. In this study, we further demonstrated that LL01 was not a P-gp substrate. It potently inhibited the growth of a variety of tumor cells, including those with multidrug resistance, with GI values in the low nanomole ranges.
View Article and Find Full Text PDFHistone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA.
View Article and Find Full Text PDFTo target the multi-facets of Alzheimer's disease (AD), a series of novel GSK-3β inhibitors containing the 2,3-diaminopyridine moiety were designed and synthesized. The amide derivatives 5a-f showed moderate potency against GSK-3β with weak Cu, Zn and Al chelating ability. The imine derivatives 9a, 9b and 9e were potent GSK-3β inhibitors and selective Cuand Al chelators.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2018
Graphene-based nanomaterials, such as graphene oxide and reduced graphene oxide, have been attracting increasing attention in the field of biology and biomedicine over the past few years. Incorporation of these novel materials with drug, gene, photosensitizer and other cargos to construct novel delivery systems has witnessed rapid advance on the basis of their large surface area, distinct surface properties, excellent biocompatibility and pH sensitivity. Moreover, the inherent photothermal effect of these appealing materials enables them with the ability of killing targeting cells via a physical mechanism.
View Article and Find Full Text PDFRheumatoid Arthritis (RA) is a chronic autoimmune disease and becomes one of the major causes of disability and work force loss. The presence of abnormal B cell and autoantibodies produced by most RA patients, primarily ACPA and RF, indicate that the function of B cell was involved in the development of RA disease. Accordingly, the drug targeting B cell has become a hot spot in the treatment of RA.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDACIs) are effective small molecules in the treatment of human cancers. In our continuing efforts to develop novel N-hydroxyterephthalamide-based HDACIs, herein we report the design and development of a new class of N-hydroxybenzamide-based HDACIs. In this new class of analogs, we inserted an ethylene moiety in the linker and used indole as a part of the Y-shaped cap group.
View Article and Find Full Text PDFIn our efforts to develop novel small-molecule inhibitors for the NOD-like receptor family pyrin-domain-containing 3 (NLRP3) inflammasome as potential disease-modifying agents to treat neurological disorders including multiple sclerosis (MS), a hydroxyl sulfonamide analogue JC-171 has been rationally designed and biologically characterized both in vitro and in vivo. Our studies established that JC-171 dose dependently inhibited LPS/ATP-induced interleukin-1β (IL-1β) release from J774A.1 macrophages with an IC of 8.
View Article and Find Full Text PDFAs a continuous research for the discovery of coumarin-based targeted anticancer agents, we designed and synthesized a series of novel histone deacetylases (HDAC) inhibitors using the 8-ethoxy-3-nitro-2H-chromene as the surface binding or cap group, linear dicarboxylic acid or ω-amino acid moiety with different length as the linking motif, ortho-aminoanilides, amides or α-aminoamides as the zinc binding group and the internal cavity motifs. Most of these 3-nitro-2H-chromene derivatives exhibited good growth inhibitory activity against K562, A549, MCF-7, PC3 and Hela cells and were more potent than the reference drug SAHA and MS-275. At the concentration of 10µM, the ortho-aminoanilide series and the d-Phe derived α-aminoamide derivatives 16a and 16b displayed more potent activity toward HADC1 over HADC2, and only moderate to weak activity over HADC6.
View Article and Find Full Text PDFPreviously, we reported the discovery of a series of N-hydroxycinnamamide-based HDAC inhibitors, among which compound 11y exhibited high HDAC1/3 selectivity. In this current study, structural derivatization of 11y led to a new series of benzamide based HDAC inhibitors. Most of the compounds exhibited high HDACs inhibitory potency.
View Article and Find Full Text PDFHistone deacetylases inhibitors (HDACIs) have been widely recognized as significant therapeutic approach to cancers. In our efforts to develop novel histone deacetylases inhibitors (HDACIs) as potential anticancer agents, a series of N -hydroxyterephthalamide derivatives with an indole cap group were designed and synthesized. Compound 12m was identified to be the most potent one (IC = 0.
View Article and Find Full Text PDFHerein, a novel mutual prodrug BC-A1 was discovered by integrating ubenimex and gemcitabine into one molecule. Biological characterization revealed that compound BC-A1 could maintain both the anti-CD13 activity of ubenimex and the cytotoxic activity of gemcitabine in vitro. Further characterization also demonstrated that compound BC-A1 exhibited significant anti-invasion and anti-angiogenesis effects in vitro.
View Article and Find Full Text PDF