Publications by authors named "Jingcong Luo"

The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes.

View Article and Find Full Text PDF

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair.

View Article and Find Full Text PDF

Stem cell-based treatment of tendon injuries remains to have some inherent issues. Extracellular vesicles derived from stem cells have shown promising achievements in tendon regeneration, though their retention in vivo is low. This study reports on the use of a collagen binding domain (CBD) to bind extracellular vesicles, obtained from tendon-derived stem cells (TDSCs), to collagen.

View Article and Find Full Text PDF

Mimicking the native microenvironment is vital for tumor engineering. Breast cancer is a highly heterogeneous disease with various molecular subtypes exhibiting distinct biological behaviors and treatment responsiveness. The heterogeneity of extracellular matrix (ECM) of breast cancer has remained largely unexplored and underestimated.

View Article and Find Full Text PDF

Developing highly bioactive scaffold materials to promote stem cell migration, proliferation and tissue-specific differentiation is a crucial requirement in current tissue engineering and regenerative medicine. Our previous work has demonstrated that the decellularized tendon slices (DTSs) are able to promote stem cell proliferation and tenogenic differentiation and show certain pro-regenerative capacity for rotator cuff tendon regeneration . In this study, we present a strategy to further improve the bioactivity of the DTSs for constructing a novel highly bioactive tendon-regenerative scaffold by surface modification of tendon-specific stem cell-derived extracellular matrix (tECM), which is expected to greatly enhance the capacity of scaffold material in regulating stem cell behavior, including migration, proliferation and tenogenic differentiation.

View Article and Find Full Text PDF

Tendon regeneration highly relies on biomechanical and biochemical cues in the repair microenvironment. Herein, we combined the decellularized bovine tendon sheet (DBTS) with extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) to fabricate a biomechanically and biochemically functional scaffold (tECM-DBTS), to provide a functional and stem cell ECM-based microenvironment for tendon regeneration. Our prior study showed that DBTS was biomechanically suitable to tendon repair.

View Article and Find Full Text PDF

Various hydrogels derived from the xenogeneic extracellular matrix (ECM) have been utilised to promote the repair and reconstruction of numerous tissues; however, there are few studies on hydrogels derived from allogeneic specimens. Human placenta derived hydrogels have been used in the therapy of ischaemic myocardium; however, their physicochemical properties and effects on cellular behaviour remain elusive. As the human placenta retains pro-angiogenic growth factors, it is hypothesized that the placenta hydrogels possess the potential to improve angiogenesis.

View Article and Find Full Text PDF

A recent study has shown that demineralized cortical bone (DCB) did not improve the healing of tendon-bone interface. Considering that there is a gradient of mineral content in the tendon-bone interface, we designed a segmentally demineralized cortical bone (sDCB) scaffold with two different regions: undemineralized cortical bone section within the scaffold (sDCB-B) and complete demineralized cortical bone section within the scaffold (sDCB-D), to mimic the natural structure of the tendon-bone interface. Furthermore, the extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) was used to modify the sDCB-D region of sDCB to construct a novel scaffold (sDCB-ECM) for enhancing the bioactivity of the sDCB-D.

View Article and Find Full Text PDF

Decellularized tendon hydrogel from human or porcine tendon has been manufactured and found to be capable of augmenting tendon repair . However, no studies have clarified the effect of decellularized tendon hydrogel upon stem cell behavior. In the present study, we developed a new decellularized tendon hydrogel (T-gel) from Macaca mulatta, and investigated the effect of T-gel on the proliferation, migration and tenogenic differentiation of Macaca mulatta tendon-derived stem cells (mTDSCs).

View Article and Find Full Text PDF

Objective: Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined.

View Article and Find Full Text PDF

Background: Poor healing of the tendon-bone interface after rotator cuff repair is one of the main causes of surgical failure. Previous studies demonstrated that demineralized cortical bone (DCB) could improve healing of the enthesis.

Purpose: To evaluate the outcomes of hierarchically demineralized cortical bone (hDCB) coated with stem cell-derived extracellular matrix (hDCB-ECM) in the repair of the rotator cuff in a rabbit model.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the biomechanical properties of tendon grafts, specifically comparing decellularized tendon slices (DTSs) and decellularized bovine tendon sheets (DBTSs) for tendon reconstruction surgery.
  • It was found that DBTSs maintained complete tendinous membranes while DTSs had incomplete structures, affecting their mechanical properties.
  • The results suggest that while DTSs can serve as a patch for tendon repairs, DBTSs are better suited as bridging materials for larger tendon defects.
View Article and Find Full Text PDF

It is highly desirable to develop a novel scaffold that can induce stem cell migration in tendon tissue engineering and regeneration. The objective of this study is to assess the effect of stem cell extracellular matrix-modified decellularized tendon slices (ECM-DTSs) on bone marrow mesenchymal stem cells (BMSCs) migration and explore the possible molecular mechanisms. Native ECM produced by BMSCs and tendon-derived stem cells (TDSCs) was deposited on DTSs, denoted as bECM-DTSs and tECM-DTSs, respectively, and the migration of BMSCs treated with the extracts from ECM-DTSs was studied.

View Article and Find Full Text PDF

Small intestinal submucosa (SIS)-derived gel injected into infarcted myocardium has been shown to promote repair and regeneration after myocardial infarction (MI); however, the specific impact of SIS gel on cardiomyocytes remained unknown. The aim of this study was to characterise SIS gel function in hypoxia-reoxygenation (H/R)-induced cardiomyocyte damage and its potential mechanism. HL-1 cardiomyocytes seeded on SIS matrix-coated plates, SIS gel, and uncoated plates were subjected to H/R, cell viability, apoptosis, expression of caspase-3, Bcl-2, and Bax were investigated.

View Article and Find Full Text PDF

Chitosan-based hydrogels have been extensively used for tissue regeneration due to the excellent biocompatibility and biodegradability. For lack of endogenous extracellular biomacromolecules, its application is obviously limited. Because of robust biological activity, porcine small intestinal submucosa (SIS) has been considered as promising candidates to increase the bioactivity of hydrogels.

View Article and Find Full Text PDF

Due to the similar collagen composition and closely physiological relationship with soft connective tissues, demineralized bone matrices (DBMs) were used to repair the injured tendon or ligament. However, the osteoinductivity of DBMs would be a huge barrier of these applications. Hydrogen peroxide (H O ) has been proved to reduce the osteoinductivity of DBMs.

View Article and Find Full Text PDF

Biglycan (BGN) has been identified as one of the critical components of the tendon-derived stem cells (TDSCs) niche and may be related to tendon formation. However, so far, no study has demonstrated whether the soluble BGN could induce the tenogenic differentiation of TDSCs in vitro. The aim of this study was to investigate the effect of BGN on the tenogenic differentiation of TDSCs.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the efficacy of an extracellular matrix scaffold with multilayer decellularized tendon slices (MDTSs) for reconstructing large rotator cuff tears in a rabbit model.

Methods: Large defects in the infraspinatus tendons were created bilaterally in 36 rabbits. The graft group underwent bridging repair of the defects with the MDTSs grafts from Achilles tendons of adult beagle dogs, and the control group underwent repair with the autologous excised tendon.

View Article and Find Full Text PDF

Objective: To investigate the effect of porcine small intestinal submucosa extracellular matrix (PSISM) on the vitality and gene regulation of hepatocyte so as to lay the experimental foundation for the application of PSISM in liver tissue engineering.

Methods: The experiment was divided into two parts: ① BRL cells were cultured with 50, 100, and 200 μg/mL PSISM-medium which were prepared by adding PSISM into the H-DMEM-medium containing 10%FBS in groups A1, B1, and C1, and simple H-DMEM-medium served as a control (group D1); ② BRL cells were seeded on 1%, 2%, and 3% PSISM hydrogel which were prepared by dissolving PSISM in sterile PBS solution containing 0.1 mol/L NaOH in groups A2, B2, and C2, and collagen type I gel served as a control (group D2).

View Article and Find Full Text PDF

Our previous study fabricated decellularized porcine muscle tissues (DPMTs) and demonstrated that DPMTs with few cell residues possess highly preserved protein components and good biocompatibility. In the physical state, skeletal muscle equips an abundant vascular network due to the vast demand of energy from aerobic metabolism. Vascular bioactive factors which are rich in skeletal muscle tissues may contribute to the angiogenic effect of DPMTs.

View Article and Find Full Text PDF

Demineralized bone matrix (DBM), as an extracellular matrix (ECM), has had limited use as a medical replacement although studies have reported a possibility for its use in tendon or ligament tissue engineering. To be an acid-extracted organic matrix, DBM contains much of bone protein, with a small amount of inorganic solids and some cell debris. However, cell debris is a critical factor that triggers inflammatory reaction in clinical reconstructions using ECM.

View Article and Find Full Text PDF
Article Synopsis
  • A new decellularization protocol was developed for processing bovine Achilles tendons to create a decellularized bovine tendon sheet (DBTS) scaffold aimed at tendon reconstruction.
  • The effectiveness of decellularization was confirmed through DNA analysis and histological qualification, showing no significant changes to the essential properties of the native tendon extracellular matrix (ECM).
  • The DBTS scaffold proved to be non-toxic and promoted fibroblast growth in vitro, demonstrating excellent compatibility when implanted in rat tissue, highlighting its potential for tendon reconstruction applications.
View Article and Find Full Text PDF

Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA).

View Article and Find Full Text PDF

Objective: To explore an optimized protocol of decellularization to fabricate an ideal scaffold derived from porcine skeletal muscle acellular matrix.

Methods: Serial-step protocol of homogenating-milling-detergent method was used to fabricate decellularized porcine muscle tissue (DPMT) derived from native porcine skeletal muscle tissue from adult pig waist. Histological method was used to assess the effects of decellularization and degreasing.

View Article and Find Full Text PDF