Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
March 2024
Objective: The aim of this study was to investigate the effects of scutellarin on the activation of astrocytes into the A1 type following cerebral ischemia and to explore the underlying mechanism.
Methods: In vivo, a mouse middle cerebral artery wire embolism model was established to observe the regulation of astrocyte activation to A1 type by scutellarin, and the effects on neurological function and brain infarct volume. In vitro, primary astrocytes were cultured to establish an oxygen-glucose deprivation model, and the mRNA and protein expression of C3, a specific marker of A1-type astrocytes pretreated with scutellarin, were examined.
CX3CR1 knockout could induce motor dysfunction in several neurological disease models mainly through regulating microglia's function. While CX3CR1 was expressed on neurons in a few reports, whether neuronal CX3CR1 could affect the function of neurons and mediate motor dysfunction under physiological conditions is unknown. To elucidate the roles of neuronal CX3CR1 on motor dysfunction, CX3CR1 knockout mice were created.
View Article and Find Full Text PDFBackground: Cerebral ischaemia‒reperfusion (I/R) frequently causes late-onset neuronal damage. Breviscapine promotes autophagy in microvascular endothelial cells in I/R and can inhibit oxidative damage and apoptosis. However, the mediation mechanism of breviscapine on neuronal cell death is unclear.
View Article and Find Full Text PDFThe migration, proliferation, and inflammatory factor secretion of vascular smooth muscle cells (VSMCs) are involved in the important pathological processes of several vascular occlusive diseases, including coronary atherosclerosis (CAS). Interleukin 1β(IL-1β), as a bioactive mediator of VSMC synthesis and secretion, can promote the pathological progress of CAS. In this study, we further explored the underlying molecular mechanisms by which IL-1β regulates VSMC migration, invasion.
View Article and Find Full Text PDFBackground: Assessment of the efficacy of a multi-agent chemotherapy protocol in which cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) are administered in canine lymphoma is generally performed by physical measurement of lymph node diameter. However, no consistent correlation has been made with prognostic indicators and the length or absence of clinical remission based on lymph node size. RNA disruption measured mid-therapy has been correlated with increased disease-free survival in recent studies of human cancer and was assessed in this study of canine lymphoma patients.
View Article and Find Full Text PDF