Publications by authors named "Jingchi Gao"

Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY.

View Article and Find Full Text PDF

Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect.

View Article and Find Full Text PDF

A concept of solar energy convertible zinc-air battery (SZAB) is demonstrated through rational design of an electrode coupled with multifunction. The multifunctional electrode is fabricated using nitrogen-substituted graphdiyne (N-GDY) with large π-conjugated carbonous network, which can work as photoresponsive bifunctional electrocatalyst, enabling a sunlight-promoted process through efficient injection of photoelectrons into the conduction band of N-GDY. SZAB enables direct conversion and storage of solar energy during the charging process.

View Article and Find Full Text PDF

To achieve the high-performance of lithium-ion battery, the optimization of electrode materials has generally been considered as the one of the important methods. But most of those works pay attention to the new materials preparation or interface modification rather than the structural innovation. Here, an advanced electrode (GDY/BP/GDY-E) with multilevel layered architecture constructed by planar building blocks stacking structure has been designed and fabricated to explore the structure design of the electrode.

View Article and Find Full Text PDF

Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV-GDY-FO) as anode materials. The goal is to motivate lithium-ion batteries (LIBs) toward ultra-high capacity, superior cyclic stability, and excellent rate performance.

View Article and Find Full Text PDF

A continuous humidity and solar-light dual responsive intelligent solid Mg-moisture battery (SMB) with a graphdiyne nanosheets array was fabricated. The integrated battery works based on a new concept of chemical bond conversion on the surface of the graphdiyne nanosheets array that is grown in situ on a 3D melamine sponge (GDY/MS). The unique structure, excellent catalytic, and semiconductor performance of GDY endows the GDY/MS with some outstanding characteristics on trapping and transferring water molecules, catalyzing HER, and utilizing solar energy, making the GDY/MS a new generation cathode for a high-performance intelligent SMB.

View Article and Find Full Text PDF

An effective and original strategy described as two-dimensional encapsulation is designed to prepare a high-performance fluorinated carbon cathode composed of a fluorinated carbon/graphdiyne heterostructure (CF/GDY). The GDY layers of CF/GDY strengthened the three-dimensional contacts between the CF particles and additive, achieving outstanding charge transport kinetics and accelerating the lithium-ion diffusion dynamic behavior. The obtained electrodes exhibited a significantly enhanced voltage platform of ∼2.

View Article and Find Full Text PDF

Potassium ion batteries (KIBs) have emerged as a promising energy storage system, but the stability and high rate capability of their electrode materials, particularly carbon as the most investigated anode ones, become a primary challenge. Here, it is identified that pitch-derived soft carbon, a nongraphitic carbonaceous species which is paid less attention in the battery field, holds special advantage in KIB anodes. The structural flexibility of soft carbon makes it convenient to tune its crystallization degree, thereby modulating the storage behavior of large-sized K in the turbostratic carbon lattices to satisfy the need in structural resilience, low-voltage feature, and high transportation kinetics.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising candidates for large-scale electric energy storage with abundant sodium resources. However, their development is challenged by the availability of satisfactory cathode materials with stable framework to accommodate the transportation of large-sized Na (1.02 Å), whose continuous insertion/extraction can easily cause irreversible volumetric deformation in the crystalline material, leading to inevitable structural failure and capacity fading.

View Article and Find Full Text PDF

The preparation of organic small-molecule cathodes is simple and low-cost; however, their low conductivity and molecular dissolution are two key issues that mean their energy density and power performance are far lower than those of inorganic batteries, thus hindering their practical application. To develop an effective coating technology is the key to obtain high-performance organic batteries. A general method of in situ weaving all-carbon graphdiyne nanocoatings is demonstrated.

View Article and Find Full Text PDF

Protein degradation plays various roles in cellular homeostasis and signal transduction. Real-time monitoring of the degradation process not only contributes to the elucidation of relevant biological phenomena but also offers a powerful tool for drug discoveries targeting protein degradation. Fluorescent protein labeling with a protein tag and a synthetic fluorescent probe is a powerful technique that enables the direct visualization of proteins of interest in living cells.

View Article and Find Full Text PDF

Protein labeling using fluorogenic probes enables the facile visualization of proteins of interest. Herein, we report new fluorogenic probes consisting of a rationally designed coumarin ligand for the live-cell fluorogenic labeling of the photoactive yellow protein (PYP)-tag. On the basis of the photochemical mechanisms of coumarin and the probe-tag interactions, we introduced a hydroxy group into an environment-sensitive coumarin ligand to modulate its spectroscopic properties and increase the labeling reaction rate.

View Article and Find Full Text PDF