Objective: The aim of this study is to investigate the viability of performing initial artificial joint replacement surgery in patients presenting with unexplained elevations in erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels.
Methods: A cohort of 22 patients, comprising 11 cases each for knee and hip joint replacements, who underwent initial artificial joint replacement surgery between November 2020 and January 2022, was recruited. All patients exhibited elevated levels of ESR and CRP prior to surgery, the etiology of which remained undetermined.
Background: The precise placement of prosthesis in total knee arthroplasty (TKA) surgery significantly impacts the postoperative outcomes and the long-term survival rate of prosthesis. While the optimal coronal position of femoral prosthesis has been extensively researched, there remains a gap in the study of sagittal placement. Therefore, our aim is to investigate the impact of the distal femoral flexion angle (DFFA) on the sagittal placement of femoral prosthesis in TKA.
View Article and Find Full Text PDFBone cutting plays an important role in spine surgical operations. The power devices with high speed employing in bone cutting usually leads to high cutting temperature of the bone tissue. This high temperature control is important in improving cutting surface quality and optimizing the cutting parameters.
View Article and Find Full Text PDFThe development of chemoresistance is closely linked to the plateau of the survival rate in osteosarcoma (OS) patients. CD133-positive (CD133+) OS cells are known as cancer stem cells (CSCs) in OS and exhibit the characteristic of chemoresistance. In this study, CD133+ and CD133‑negative (CD133‑) MG‑63 cells were isolated by magnetic activated cell sorting (MACS).
View Article and Find Full Text PDFUnder most circumstances, hepatitis B virus (HBV) is noncytopathic. However, hepatocellular regeneration that accompanies each bout of hepatitis appears to be associated with increased integration of HBV DNA fragments expressing the virus encoded hepatitis B x antigen (HBxAg). Intrahepatic HBxAg staining correlates with the intensity and progression of chronic liver disease (CLD), and additional work has shown that HBxAg blocks immune mediated killing by Fas and by tumor necrosis factor alpha (TNFalpha).
View Article and Find Full Text PDFHepatitis B x antigen (HBxAg) contributes significantly to the pathogenesis of chronic infection and development of hepatocellular carcinoma. To discern some of its operative pathways, HepG2 cells were stably transduced with HBx or the bacterial chloramphenicol acetyltransferase (CAT) gene. Differential gene expression has previously revealed an upregulated gene, clone 7 (URG7), that conferred resistance to anti-Fas killing on HepG2X cells.
View Article and Find Full Text PDFHepatitis B and related viruses that infect mammalian hosts encode the "X" protein that has been shown to contribute importantly to the pathogenesis of chronic liver disease (CLD) and to the development of hepatocellular carcinoma (HCC). In a variety of tissue culture systems, hepatitis B virus (HBV) X antigen, or HBxAg, has been shown to trigger apoptosis, while other evidence suggests that HBxAg inhibits apoptosis and stimulates the cell cycle by constitutively activating a number of signaling pathways that are important for hepatocellular growth and survival. These apparently contrasting properties of HBxAg may be associated with differences in the X protein itself, since carboxy-terminal truncated forms of HBxAg appear to be associated with HCC lesions.
View Article and Find Full Text PDFHepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment.
View Article and Find Full Text PDFAlthough the overview above provides a partial molecular picture of the early stages of stepwise hepatocarcinogenesis. it should be emphasized that tumor and nontumor liver contain multiple changes, and that there is variability in their profile among different patients even within single studies. Variability in the number and types of genetic changes has also been observed geographically, and may be dependent upon the etiology of the tumor (viral, chemical or both).
View Article and Find Full Text PDFHepatitis B virus (HBV) X antigen (HBxAg) may contribute to the development of hepatocellular carcinoma (HCC) by activation of signalling pathways such as NF-kappaB. To identify NF-kappaB target genes differentially expressed in HBxAg-positive compared to -negative cells, HepG2 cells consistently expressing HBxAg (HepG2X cells) were stably transfected with pZeoSV2 or pZeoSV2-IkappaBalpha. mRNA from each culture was isolated and compared by PCR select cDNA subtraction.
View Article and Find Full Text PDFHepatitis B virus encoded X antigen (HBxAg) may contribute to the development of hepatocellular carcinoma (HCC) by up- or downregulating the expression of cellular genes that promote cell growth and survival. To test this hypothesis, HBxAg-positive and -negative HepG2 cells were constructed, and the patterns of cellular gene expression compared by polymerase chain reaction select cDNA subtraction. The full-length clone of one of these upregulated genes (URG), URG4, encoded a protein of about 104 kDa.
View Article and Find Full Text PDFThe development of hepatocellular carcinoma (HCC) is a multistep process associated with changes in host gene expression, some of which correlate with the appearance and progression of tumor. Preneoplastic changes in gene expression result from altered DNA methylation, the actions of hepatitis B and C viruses, and point mutations or loss of heterozygosity (LOH) in selected cellular genes. Tumor progression is characterized by LOH involving tumor suppressor genes on many chromosomes and by gene amplification of selected oncogenes.
View Article and Find Full Text PDFThe hepatitis B virus-encoded X antigen (HBxAg) may contribute to the development of liver cancer, in part, by stimulating the growth and survival of infected cells in the face of ongoing immune responses. Given that the Fas ligand/receptor system contributes to the pathogenesis of chronic hepatitis B, experiments were designed to test the hypothesis that HBxAg mediates resistance of liver cells to anti-Fas killing. Accordingly, when HBxAg was introduced into HepG2 cells, it rendered these cells partially resistant to killing by anti-Fas.
View Article and Find Full Text PDF