Publications by authors named "JingYuan Wan"

T cell exclusion is crucial in enabling tumor immune evasion and immunotherapy resistance. However, the key genes driving this process remain unclear. We uncovered a notable increase of insulin-like growth factor 2 (IGF2) in immune-excluded tumors, predominantly secreted by cancer-associated fibroblasts (CAFs).

View Article and Find Full Text PDF

Background: Non-alcoholic steatohepatitis (NASH) is a metabolic dysregulation-related disorder that is generally characterized by lipid metabolism dysfunction and an excessive inflammatory response. Currently, there are no authorized pharmacological interventions specifically designed to manage NASH. It has been reported that Ginkgolide C exhibits anti-inflammatory effects and modulates lipid metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Unrestricted endoplasmic reticulum (ER) stress and the activation of the ER-associated protein degradation (ERAD) pathway may worsen non-alcoholic steatohepatitis (NASH), with Derlin-1 playing a crucial role in this process.
  • Research showed that Derlin-1 levels increased in NASH models and patients, and manipulating its expression altered liver injury, fat buildup, and inflammation.
  • Derlin-1 seems to enhance ER stress and necroptosis, suggesting that targeting it could be a potential strategy for treating or reversing NASH.
View Article and Find Full Text PDF

Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery.

View Article and Find Full Text PDF

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is a prevalent metabolic disease, characterized by the hepatic steatosis, inflammation, and fibrosis, which is lack of effective treatment currently. Protectin D1 (PTD1), a lipid mediator from omega-3 fatty acid docosahexaenoic acid (DHA), has displayed wide pharmacological actions including anti-inflammation in a variety of diseases, but the role of PTD1 on NASH remains unclear. In this study, using the methionine and choline deficient (MCD) fed NASH model, we explored the effect and underlying mechanism of PTD1 on NASH in mice.

View Article and Find Full Text PDF

: Non-alcoholic steatohepatitis (NASH) is a significant risk factor for hepatocellular carcinoma (HCC) development. Timely treatment during the NASH stage is essential to minimize the possibility of disease progression to HCC. Cuproptosis is a newly identified form of cellular death that could impact the progression of various diseases and cancers.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a common joint disease with long-term pain and dysfunction that negatively affects the quality of life of patients. Neutrophil extracellular traps (NETs), consisting of DNA, proteins and cytoplasm, are released by neutrophils and play an important role in a variety of diseases. However, the relationship between OA and NETs is unclear.

View Article and Find Full Text PDF

Acetaminophen (APAP) overdose would lead to liver toxicity and even acute liver failure in severe cases by triggering an inflammatory response and oxidative stress. Sesamin has been reported to possess anti-inflammatory and antioxidant actions in several animal disease models. In the present study, the effects and mechanisms of sesamin on APAP-induced acute liver injury (ALI) were explored.

View Article and Find Full Text PDF

Accumulating evidence indicates that metabolic responses are deeply integrated into signal transduction, which provides novel opportunities for the metabolic control of various disorders. Recent studies suggest that itaconate, a highly concerned bioactive metabolite catalyzed by immune responsive gene 1 (IRG1), is profoundly involved in the regulation of apoptosis, but the underlying mechanisms have not been fully understood. In the present study, the molecular mechanisms responsible for the apoptosis-modulatory activities of IRG1/itaconate have been investigated in mice with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced apoptotic liver injury.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is characterized by the breakdown of cartilage, with emerging evidence suggesting that glucose metabolism plays a crucial role in maintaining joint health.
  • The study finds that the enzyme Pyruvate Dehydrogenase Kinase 1 (PDK1) is reduced in OA cartilage and its inhibition leads to accelerated cartilage loss and increased inflammation.
  • Overall, PDK1 seems to significantly contribute to OA progression by promoting cartilage degradation and inflammation in the articular cartilage.
View Article and Find Full Text PDF

Accumulating evidence suggests that sialic acids is closely related to atherosclerosis. However, the effects and underlying mechanisms of sialic acids in atherosclerosis have been not defined. Macrophages are one of the most important cells during plaque progression.

View Article and Find Full Text PDF

Objectives: Non-alcoholic steatohepatitis (NASH) is a chronic liver disease histologically characterized by liver steatosis, hepatocellular injury, inflammation and fibrosis, resulting in cirrhosis and hepatocellular carcinoma, but effective measures and obvious pathogenesis for NASH remain elusive. Chrysin (CH) has been reported to have anti-inflammatory effects but shows lower bioavailability.

Methods: In this study, a chrysin nanoliposome (CH-NL) was first prepared and characterized.

View Article and Find Full Text PDF

. The prognostic role of adjacent nontumor tissue in patients with breast cancer (BC) is still unclear. The activity changes in immunologic and hallmark gene sets in normal tissues adjacent to BC may play a crucial role in predicting the prognosis of BC patients.

View Article and Find Full Text PDF

Since T cell exclusion contributes to tumor immune evasion and immunotherapy resistance, how to improve T cell infiltration into solid tumors becomes an urgent challenge. We employed deep learning to profile the tumor immune microenvironment (TIME) in triple negative breast cancer (TNBC) samples from TCGA datasets and noticed that fibroblast growth factor receptor (FGFR) signaling pathways were enriched in the immune-excluded phenotype of TNBC. Erdafitinib, a selective FGFR inhibitor, was then used to investigate the effect of FGFR blockade on TIME landscape of TNBC syngeneic mouse models by flow cytometry, mass cytometry (CyTOF) and RNA sequencing.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis; there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression.

View Article and Find Full Text PDF

: Hepatic ischemia/reperfusion (I/R) injury to the liver is a significant cause of morbidity and mortality following liver surgery, trauma, and hemorrhagic shock. It was reported that allicin, a type of garlic compound, had a protective effect against other hepatic diseases. Allicin's ability to protect against liver injury caused by ischemic reperfusion remains unknown.

View Article and Find Full Text PDF

Accumulating evidence indicates that metabolic events profoundly modulate the progression of various diseases. Pyruvate is a central metabolic intermediate in glucose metabolism. In the present study, the metabolic status of pyruvate and its pharmacological significance has been investigated in mice with lipopolysaccharide/D-galactosamine (LPS/D-Gal)-induced fulminant liver injury.

View Article and Find Full Text PDF

Objectives: The role of Paeoniflorin on hepatic fibrosis and the specific mechanisms has not yet been elucidated. Therefore, we explored whether Paeoniflorin exerted protective effects on carbon tetrachloride (CCl4)-induced hepatic fibrosis and the underlying mechanisms.

Methods: A model of hepatic fibrosis was induced by intraperitoneally injecting with CCl4 (10% 5 μl/g) twice a week for 7 weeks.

View Article and Find Full Text PDF

Tumor- or cancer-associated fibroblasts (TAFs), one of the most abundant stromal cell types in various carcinomas, consist of a heterogeneous cell population. Typically, TAFs are assigned with pro-tumor activities to promote tumor growth and progression. One of the key features of solid tumors is the metabolic reprogramming that induces alterations of bioenergetics and biosynthesis in both tumor cells and TAFs.

View Article and Find Full Text PDF

CQMUH-011 is a modified adamantane sulfonamide compound, that inhibits macrophage proliferation and possesses anti-inflammatory properties. Here, fresh mouse splenocytes were obtained and stimulated with concanavalin A (ConA, 5 μg/ml) in vitro; and experimental autoimmune hepatitis (AIH) was induced by ConA (20 mg/kg, iv) in vivo, to clarify the protective effects of CQMUH-011 against AIH and its possible mechanisms. Our results demonstrated that CQMUH-011 pretreatment can dose-dependently inhibit the proliferation of splenocytes in vitro.

View Article and Find Full Text PDF

Salidroside (Sal), a natural phenolic compound isolated from Rhodiola sachalinensis, has been utilized as anti-inflammatory and antioxidant for centuries, however, its effects against liver injury and the underlying mechanisms are unclear. This study was designed to evaluate the protective effects and underlying mechanisms of Sal on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. C57BL/6 mice were pretreated with Sal before CCl4 injection, the serum and liver tissue were collected to evaluate liver damage and molecular indices.

View Article and Find Full Text PDF

Acetaminophen (APAP) is a common antipyretic and analgesic drug, but its overdose can induce acute liver failure with lack of effective therapies. Hesperetin, a dihydrogen flavonoid compound, has been revealed to exert multiple pharmacological activities. Here, we explored the protective effects and mechanism of hesperetin on APAP-induced hepatotoxicity.

View Article and Find Full Text PDF

Acute liver injury and its terminal phase, hepatic failure, trigger a series of complications, including hepatic encephalopathy, systematic inflammatory response syndrome, and multiorgan failure, with relatively high morbidity and mortality. Liver transplantation is the ultimate intervention, but the shortage of donor organs has limited clinical success. Mangiferin (MF), a xanthone glucoside, has been reported to have excellent anti-inflammatory efficacy.

View Article and Find Full Text PDF

The excessive generation of reactive oxygen species (ROS) plays crucial roles in the development of acute liver injury. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is responsible for the robust production of ROS under inflammatory circumstance, but the pathological roles of NOX and the pharmacological significance of NOX inhibitor in acute liver injury remains unclear. In the present study, the potential roles of NOX in acute liver injury were investigated in a mouse model with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute liver injury.

View Article and Find Full Text PDF